Chromatin - References

  • Angeles,M. and Franco,L. (1986). The Nucleosomal Repeat Length of Pea (Pisum-Sativum) Chromatin Changes During Germination. Plant Molecular Biology 7, 25-31.
  • Arya,G. and Schlick,T. (2006). Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc. Natl. Acad. Sci. U. S. A 103, 16236-16241.
  • Arya,G. and Schlick,T. (2009). A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A 113, 4045-4059.
  • Arya,G., Zhang,Q., and Schlick,T. (2006). Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys. J. 91, 133-150.
  • Baumann,C.G., Smith,S.B., Bloomfield,V.A., and Bustamante,C. (1997). Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U. S. A 94, 6185-6190.
  • Bascom, G., Sanbonmatsu, K.Y, and Schlick, T.  (2016). Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.J Phys. Chem. B, 120,8642-53.
  • Bascom, G., Kim, T., and Schlick, T. (2017).Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion. J Phys. Chem. B, 121, 3882-3894.
  • Bascom, G., and Schlick, T. (2017). Linking Chromatin Fibers to Gene Folding by Hierarchical Looping. Biophysical Journal, 112, 434-445.
  • Beard,D.A. and Schlick,T. (2001a). Computational modeling predicts the structure and dynamics of chromatin fiber. Structure 9, 105-114.
  • Beard,D.A. and Schlick,T. (2001b). Modeling salt-mediated electrostatics of macromolecules: The discrete surface charge optimization algorithm and its application to the nucleosome. Biopolymers 58, 106-115.
  • Beard,D.A. and Schlick,T. (2003). Unbiased rotational moves for rigid-body dynamics. Biophys. J. 85, 2973-2976.
  • Brogaard, K., Xi, L., Wang, J. P., & Widom, J. (2012). A map of nucleosome positions in yeast at base-pair resolution. Nature, 486, 496-501.
  • Collepardo-Guevara, R., & Schlick, T. (2012). Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes. Nuc. Acids Res., 40, 8803-8817.
  • Collepardo-Guevara, R., Portella, G., Vendruscolo, M., Frenkel, D., Schlick, T., & Orozco, M. (2015). Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study. J Amer. Chem. Soc.137,10205-10215.
  • Dorigo,B., Schalch,T., Kulangara,A., Duda,S., Schroeder,R.R., and Richmond,T.J. (2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571-1573.
  • Eagen, K. P., Hartl, T. A., & Kornberg, R. D. (2015). Stable chromosome condensation revealed by chromosome conformation capture. Cell, 163, 934-946
  • Eltsov, M., MacLellan, K. M., Maeshima, K., Frangakis, A. S., & Dubochet, J. (2008). Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. P Nat. Acad. Sci. USA, 105, 19732-19737.
  • Felsenfeld,G. and Groudine,M. (2003). Controlling the double helix. Nature 421, 448-453.
  • Finch,J.T. and Klug,A. (1976). Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. U. S. A 73, 1897-1901.
  • Gan, H.H. and Schlick,T. (2010). Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Approach. Biophys. J. 99(8): 2587-2596.
  • Grigoryev,S.A., Arya,G., Correll,S., Woodcock,C.L., and Schlick,T. (2009). Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl. Acad. Sci. U. S. A 106, 13317-13322.
  • Grigoryev, S. A., Bascom, G., Buckwalter, J. M., Schubert, M. B., Woodcock, C. L., & Schlick, T. (2016). Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc. Natl. Acad. Sci. U.S.A., 113,1238-1243.
  • Hsieh, T. H. S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., & Rando, O. J. (2015). Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell, 162,108-119.
  • Horn,P.J. and Peterson,C.L. (2002). Molecular biology. Chromatin higher order folding--wrapping up transcription. Science 297, 1824-1827.
  • Olins, A. L., Langhans, M., Monestier, M., Schlotterer, A., Robinson, D. G., Viotti, C.,  & Olins, D. E. (2011). An epichromatin epitope: persistence in the cell cycle and conservation in evolution. Nucleus, 2, 47-60.
  • Rao, S; Huang, S; St Hilaire, B; Engreitz, J; Perez, E; Kieffer-Kwon, KR; Sanborn, A; Johnstone, S; Bascom, G; Bochkov, I; Huang, X; Shamim, M; Shin, J; Turner, D; Dudchenko, O; Omer, A; Robinson, J; Schlick, T; Bernstein, B; Casellas, R; Lander, E; & Lieberman Aiden, E.(2107). Cohesin loss eliminates all loop domains, leading to links among superenhancers and downregulation of nearby genes” Cell, In Press.
  • Rouzina,I. and Bloomfield,V.A. (1998). DNA bending by small, mobile multivalent cations. Biophys. J. 74, 3152-3164.
  • Perisic,O., Collepardo-Guevara, R. and Schlick,T. (2010). Modeling Studies of Chromatin Fiber Structure as a Function of DNA Linker Length. J. Mol. Biol. 403: 777-802.
  • Schalch,T., Duda,S., Sargent,D.F., and Richmond,T.J. (2005). X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138-141.
  • Schlick,T. (2009). From Macroscopic to Mesoscopic Models of Chromatin Folding. Chapter 15, pp. 514--535, Multiscale Methods: Bridging the Scales in Science and Engineering, J. Fish, Editor, Oxford University Press.
  • Schlick,T. and Perisic,O. (2009). Mesoscale simulations of two nucleosoem-repeat length oligonucleosomes. Phys. Chem. Chem. Phys. (DOI: 10. 1039/B918629H).
  • Segal,E., Fondufe-Mittendorf,Y., Chen,L., Thastrom,A., Field,Y., Moore,I.K., Wang,J.P., and Widom,J. (2006). A genomic code for nucleosome positioning. Nature 442, 772-778.
  • Staynov,D.Z. and Proykova,Y.G. (2008). Topological constraints on the possible structures of the 30 nm chromatin fibre. Chromosoma 117, 67-76.
  • Sun,J., Zhang,Q., and Schlick,T. (2005). Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. Proc. Natl. Acad. Sci. U. S. A 102, 8180-8185.
  • Tremethick,D.J. (2007). Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128, 651-654.
  • Ou, H. D., Phan, S., Deerinck, T. J., Thor, A., Ellisman, M. H., & O’shea, C. C. (2017). ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science, 357,6349.
  • Van Holde,K. and Zlatanova,J. (2007). Chromatin fiber structure: Where is the problem now? Semin. Cell Dev. Biol. 18, 651-658.
  • Voong, L. N., Xi, L., Sebeson, A. C., Xiong, B., Wang, J. P., & Wang, X. (2016). Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell, 167,1555-1570.
  • Worcel,A., Strogatz,S., and Riley,D. (1981). Structure of chromatin and the linking number of DNA. Proc. Natl. Acad. Sci. U. S. A 78, 1461-1465.
  • Zhang,Q., Beard,D.A., and Schlick,T. (2003). Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the Discrete Surface Charge Optimization (DiSCO) algorithm. J. Comput. Chem. 24, 2063-2074.