DNA Repair and Fidelity Mechanisms - References

  • Alberts,I.L., Wang,Y., and Schlick,T. (2007). DNA polymerase beta catalysis: are different mechanisms possible? J. Am. Chem. Soc. 129, 11100-11110.
  • Arora,K., Beard,W.A., Wilson,S.H., and Schlick,T. (2005). Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. Biochemistry 44, 13328-13341.
  • Arora,K. and Schlick,T. (2004). In silico evidence for DNA polymerase-beta's substrate-induced conformational change. Biophys. J. 87, 3088-3099.
  • Arora,K. and Schlick,T. (2005). Conformational transition pathway of polymerase beta/DNA upon binding correct incoming substrate. J. Phys. Chem. B 109, 5358-5367.
  • Beard,W.A. and Wilson,S.H. (1998). Structural insights into DNA polymerase beta fidelity: hold tight if you want it right. Chem. Biol. 5, R7-13.
  • Bebenek,K., Garcia-Diaz,M., Blanco,L., and Kunkel,T.A. (2003). The frameshift infidelity of human DNA polymerase lambda. Implications for function. J. Biol. Chem. 278, 34685-34690.
  • Bebenek,K., Garcia-Diaz,M., Foley,M.C., Pedersen,L.C., Schlick,T., and Kunkel,T.A. (2008). Substrate-induced DNA strand misalignment during catalytic cycling by DNA polymerase lambda. EMBO Rep. 9, 459-464.
  • Bojin,M.D. and Schlick,T. (2007). A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta. J. Phys. Chem. B 111, 11244-11252.
  • Freudenthal, B. Beard, W. Perera, L. Shock, D. Kim, T. Schlick, T. and Wilson, S. (2014). Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 517, 635-639.
  • Foley,M.C., Arora,K., and Schlick,T. (2006). Sequential side-chain residue motions transform the binary into the ternary state of DNA polymerase λ. Biophys. J. 91, 3182-3195.
  • Foley,M.C. and Schlick,T. (2008). Simulations of DNA pol lambda R517 mutants indicate 517's crucial role in ternary complex stability and suggest DNA slippage origin. J. Am. Chem. Soc. 130, 3967-3977.
  • Foley, M. and Schlick, T. (2009). Relationship Between Conformational Changes in Pol λ Active Site Upon Binding Incorrect Nucleotides and Mismatch Incorporation Rates. J. Phys. Chem. B, 113,13035-13047.
  • Foley, M., Padow, V., and Schlick, T. (2010). Extraordinary Ability of DNA Pol λ to Stabilize Misaligned DNA. J. Am. Chem. Soc.132, 13403-13416.
  • Foley, M. Arora, K. and Schlick, T. (2012). Intrinsic Motions of DNA Polymerases Underlie Their Remarkable Specificity and Selectivity and Suggest a Hybrid Substrate Binding Mechanism. In Innovations in Biomolecular Modeling and Simulations, Volume 2, T. Schlick, ed., Royal Society of Chemistry, London
  • Garcia-Diaz,M., Bebenek,K., Krahn,J.M., Kunkel,T.A., and Pedersen,L.C. (2005). A closed conformation for the Pol lambda catalytic cycle. Nat. Struct. Mol. Biol. 12, 97-98.
  • Garcia-Diaz,M., Bebenek,K., Krahn,J.M., Pedersen,L.C., and Kunkel,T.A. (2006). Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124, 331-342.
  • Garcia-Diaz,M. and Kunkel,T.A. (2006). Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem. Sci. 31, 206-214.
  • Hoeijmakers,J.H. (2009). DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475-1485.
  • Jackson,S.P. and Bartek,J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071-1078.
  • Kim, T, Freudenthal, B.D. Beard W. Wilson, S. and Schlick, T. (2016) Insertion of oxidized nucleotide triggers rapid DNA polymerase opening, Nucleic Acids Research, 44 4409-24.
  • Li, Y and Schlick, T. (2010). Modeling DNA Polymerase μ Motions: Subtle Transitions before Chemistry", Biophys. J.99, 3463-3472.
  • Li, Y. Gridley, C. Jaeger, J. Sweasy, J. and Schlick, T. (2012) Unfavorable electrostatic and steric interactions in DNA polymerase β E295K mutant interfere with the enzyme’s pathway, J. Am. Chem. Soc., 134, 9999-10010.
  • Li, Y and Schlick, T. (2013). Gate-keeper Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides, PLoS Comput. Biol.9, 1-14.
  • Li, Y., Freudenthal, B. D., Beard, W. A., Wilson, S. H., & Schlick, T. (2014). Optimal and variant metal-ion routes in DNA polymerase β’s conformational pathways. J Amer. Chem. Soc., 136, 3630-3639.
  • Lindahl,T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-715.
  • Ling,H., Boudsocq,F., Plosky,B.S., Woodgate,R., and Yang,W. (2003). Replication of a cis-syn thymine dimer at atomic resolution. Nature 424, 1083-1087.
  • Ling,H., Boudsocq,F., Woodgate,R., and Yang,W. (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91-102.
  • Moon,A.F., Garcia-Diaz,M., Batra,V.K., Beard,W.A., Bebenek,K., Kunkel,T.A., Wilson,S.H., and Pedersen,L.C. (2007). The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair (Amst) 6, 1709-1725.
  • Ollis,D.L., Brick,P., Hamlin,R., Xuong,N.G., and Steitz,T.A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762-766.
  • Radhakrishnan,R., Arora,K., Wang,Y., Beard,W.A., Wilson,S.H., and Schlick,T. (2006). Regulation of DNA Repair Fidelity by Molecular Checkpoints: "Gates" in DNA Polymerase beta's Substrate Selection. Biochemistry 45, 15142-15156.
  • Radhakrishnan,R. and Schlick,T. (2004a). Biomolecular free energy profiles by a shooting/umbrella sampling protocol, "BOLAS". J. Chem. Phys. 121, 2436-2444.
  • Radhakrishnan,R. and Schlick,T. (2004b). Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase beta's closing. Proc. Natl. Acad. Sci. USA 101, 5970-5975.
  • Radhakrishnan,R. and Schlick,T. (2005). Fidelity discrimination in DNA polymerase beta: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair. J. Am. Chem. Soc. 127, 13245-13252.
  • Radhakrishnan,R. and Schlick,T. (2006). Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta. Biochem. Biophys. Res. Commun. 350, 521-529.
  • Sampoli Benitez,B.A., Arora,K., and Schlick,T. (2006). In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism. Biophys. J. 90, 42-56.
  • Sampoli Benitez, B. Arora, K. Balistreri, L. and Schlick, T. (2008) Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation, J. Mol. Biol., 384, 1086-1097.
  • Sampoli Benítez, B. Barbati, Z. Arora, K. Bogdanovic, J. and Schlick, T. (2013) How DNA Polymerase X Preferentially Accommodates Incoming dATP Opposite 8-Oxoguanine on the Template, Biophys. J., 105, 2559-2568.
  • Silvian,L.F., Toth,E.A., Pham,P., Goodman,M.F., and Ellenberger,T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat. Struct. Biol. 8, 984-989.Vande Berg,B.J., Beard,W.A., and Wilson,S.H. (2001). DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase beta. Implication for the identity of the rate-limiting conformational change. J. Biol. Chem. 276, 3408-3416.
  • Wang,Y., Arora,K., and Schlick,T. (2006). Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Protein Sci. 15, 135-151.
  • I.L. Alberts, Y. Wang, T. Schlick, (2007). DNA polymerase β catalysis: are different mechanisms possible? J Am Chem Soc, 129,11100-10.
  • Wang,Y. and Schlick,T. (2008). Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. J. Am. Chem. Soc. 130, 13240-13250.
  • Yang,L., Beard,W.A., Wilson,S.H., Broyde,S., and Schlick,T. (2002). Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. J. Mol. Biol. 317, 651-671.