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Assignment 13: Advanced Exercises in Monte Carlo and Minimization
Techniques

1. Study the function:
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Note that is has many local minima and a global minimum at
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by the standard simulated annealing method. Use the starting point�B���"�,	

and step perturbations C �A�D/
-E�GF , and set H in the range of 3.5 to
4.5. Limit the number of steps to I �GF>/ . Now implement the variant of the
simulated annealing method where acceptance probabilities for steps withC �KJL/ are proportional to M"N%O �B� H �QP C �R	 , with the exponent S �T�U� .
Analyze and compare the efficiency of the searches in both cases. It will be
useful to plot all pairs of points

���'�2�
	
that are generated by the method and

distinguish ‘accepted’ from ‘rejected’ points.

2. Devise a different variant of the basic simulated annealing minimization
method that would incorporate gradient information to make the searches
more efficient.

3. Consider the following global optimization deterministic approach based
on the diffusion equation as first suggested by Scheraga and colleagues (L.
Piela, J. Kostrowicki, and H. A. Scheraga, “The Multiple-Minima Problem
in Conformational Analysis of Molecules. Deformation of the Potential En-
ergy Hypersurface by the Diffusion Equation Method”, J. Chem. Phys. 93,
3339–3346 (1989)).
The basic idea is to deform the energy surface smoothly. That is, we seek
to make “shallow” wells in the potential energy landscape disappear itera-
tively until we reach a global minimum of the deformed function. Then we
“backtrack” by successive minimization from the global minimum of the
transformed surface in the hope of reaching the global minimum of the real
potential energy surface. This idea can be implemented by using the heat
equation where V represents the temperature distribution in space
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, and W

represents time: X � VX � � �
X
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Here, the boundary condition at time W �Z/ equates the initial temperature
distribution with the potential energy function

�����&	
. Under certain condi-

tions (e.g.,
�

is bounded), a solution exists. Physically, the application of
this equation exploits the fact that the heat flow (temperature distribution)
should eventually settle down.
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To formulate this idea, let us for simplicity consider first a one-dimensional
problem where the energy function

�
depends on a scalar

�
. Let

� ����� �0��	
represent the � th derivative of

�
with respect to

�
and define the

transformation operator � on the energy function
�

for H�� / as follows:�
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That is, we have:
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Now writing H � W ��� where W is the time variable, and letting
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we write:
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Thus we can define V � W 	 as

V � W 	�� M N�O �2�&%Q� W 	�	 � M"N%O � W ( �2� (�� � 	&- (D.16)

In higher dimensions, let
�

represent the collective vector of � indepen-
dent variables; we replace the differential operator above
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by the

Laplacian operator, that is
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Using this definition, we can also write

V � W 	�� V � � W 	 V � � W 	7-/-0- V � � W 	
where

V
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This definition produces the heat equation (D.12, D.13) sinceX
V � W 	 	 �4����	��X
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�
X � V � W 	X � � 	 ���0��	���-

In practice, the diffusion equation method for global optimization is im-
plemented by solving the heat equation by Fourier techniques (easy, for
example, if we have dihedral potentials only) or by solving for V up to
a sufficiently large time W . This solution, or approximate solution (repre-
senting

������� W 	 for some large W ), is expected to yield a deformed surface
with one (global) minimum. With a local minimization algorithm, we com-
pute the global minimum

� �
of the deformed surface, and then begin an

iterative deformation/minimization procedure from
���

and
������� W 	 so that

at each step we deform backwards the potential energy surface and obtain
its associated global minimum (
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). Of
course, depending on how the backtracking is performed, different final
solutions can be obtained.

(a) To experiment with this interesting diffusion-equation approach for
global minimization, derive a general form for the deformation oper-
ator V � W 	 � M N�O � W ( � � (>� � 	 on the following special functions
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:

(i) polynomial functions of degree � , and (ii) trigonometric functions��� ��� � and
�
	 � � � , where � is a real-valued number (frequency). What

is the significance of your result for (ii)?
(b) Apply the deformation operator V � W 	 = M N�O � W ( � � (>� � 	 to the quadratic

function �4����	��A� � ��3� � �)� � � � (D.17)

with
 � ;

and
�<� �

. Evaluate and plot your resulting V � W 	B���0��	
function at W � /
� CRW ��9 CRW �"-E- - , for small time increments CQW until the
global minimum is obtained.

(c) Apply the deformation operator V � W 	 for the two-variable function
in eq. (D.11). Examine behavior of the deformation as W �  

as a
function of the constants


and
�
. Under what conditions will a unique

minimum be obtained as W �  
?

4. Use Newton minimization to find the minimum of the two-variable func-
tion in equation (D.11) and the one-variable function in equation (D.17).
It is sufficient for the line search to use simple bisection: � � �>�
/1- F ,
etc., or some other simple backtracking strategy. For the quartic function,
experiment with various starting points.


