66 Appendix D. Homeworks

Assignment 14: Advanced Exercises in Molecular Dynamics

1. Calculate the 'natural' time unit for molecular dynamics simulations of biomolecules from the relation: energy = mass * $(length/time)^2$, to obtain the time unit τ corresponding to the following units:

length	(1):	$1 \text{ Å} = 10^{-10} \text{ m}$
mass	(m):	1 amu = 1 g/mol
energy	(v):	1 kcal/mol = 4.184 kJ/mol.

Estimate the "quantum mechanical cutoff frequency", $\omega_c = kT/\hbar$ at room temperature (~ 300° K).

2. Derive the amplitude decay rate of $\gamma/2$ for an underdamped harmonic oscillator due to *friction* by solving the equations of motion:

$$m\frac{d^2x}{dt} = -kx - m\gamma\frac{dx}{dt}$$
(D.18)

and examining time behavior of the solution.

- 3. Derive the amplitude decay rate of $\omega^2(\Delta t)/2$ *intrinsic* to the *implicit-Euler* scheme by solving the discretized form of eq. (D.18).
- 4. Compare your answer in problem 2 above with behavior of the *explicit*-*Euler* solution of eq. (D.18).
- Compare molecular and Langevin dynamics simulations of two water molecules by the Verlet discretization of the equation of motion and its Langevin analog. Use the "SPC" *intermolecular* potential, given by:

$$E = \sum_{\substack{(i,j) \equiv (0,0) \\ i < j}} \left[\frac{-A}{r_{ij}^6} + \frac{B}{r_{ij}^{12}} \right] + \sum_{\substack{(k,\ell) \equiv \text{intermolecular} \\ (0,0), (0,H), (H,H) \\ k < \ell}} \left[\frac{Q_k Q_\ell}{r_{k\ell}} \right]$$

where

$$A = 626 (\text{kcal Å}^{\circ})/\text{mol}$$

$$B = 629 \times 10^{3} (\text{kcal Å}^{12})/\text{mol}$$

$$Q_{\rm H} = 0.41 e$$

$$Q_{\rm O} = -0.82 e.$$

A numerical factor of 332 is needed in the electrostatic potential to obtain energies in kcal/mol with the coefficients above. For simplicity, assume that *intramolecular* geometries are rigid: $r_{\rm OH} = 1$ Å, $\cos \theta_{\rm HOH} = -1/3$. (You can use harmonic soft constraints). Begin by first minimizing the energy of the water dimer and examining the hydrogen bond geometry (hydrogenbond distance and angle θ between the hydrogen-bond vector and bisector of the acceptor molecule). Then study numerical behavior of the two models/schemes as a function of Δt , and examine the hydrogen bond geometry. Experiment with $\Delta t = 1, 2, 5$, and 10 fs and use γ values in the range of 1 to 50 ps⁻¹. If you are more ambitious, continue to study energy-minimized structures of water clusters of larger sizes and their dynamics. Analyze the hydrogen bonding networks of these clusters.

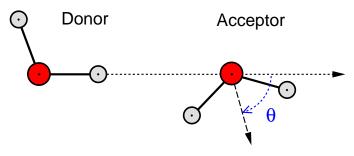


Figure D.4. Hydrogen bond geometry: The angle θ is defined between the Hydrogen-bond vector and the bisector of the acceptor molecule.

Avogadro's Number	$N_A = 6.0221 \times 10^{23} \text{ mol}^{-1}$
Planck's Constant	$h = 6.6261 imes 10^{-34}$ Jsec
	$\hbar = h/2\pi = 1.055 imes 10^{-34}$ Jsec
Boltzmann's Constant	$k_B = 1.38066 imes 10^{-23} \mathrm{JK}^{-1}$
Gas Constant	$R = k_B N_A = 8.3145 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$
Atomic Mass Unit, amu	$(1/N_A) = 1$ g/mol = 1.6605 × 10 ⁻²⁷ kg
	$\pi = 3.14159$
	1 kcal = 4.184 kJ

Some Useful Constants and Conversion Factors