Molecular Modeling and Simulation: An Interdisciplinary Guide

Tamar Schlick

Contents

Preface   (PDF)
Prelude  (PDF)
Table of Contents  (PDF)
1 Biomolecular Structure and Modeling: Historical Perspective
1.1 A Multidisciplinary Enterprise
       1.1.1 Consilience
       1.1.2 What is Molecular Modeling
       1.1.3 Need For Critical Assessment
       1.1.4 Text Overview
1.2 Molecular Mechanics
       1.2.1 Pioneers
       1.2.2 Simulation Perspective
1.3 Experimental Progress
      1.3.1 Protein Crystallography
      1.3.2 DNA Structure
      1.3.3 Crystallography
      1.3.4 NMR Spectroscopy
1.4 Modern Era
      1.4.1 Biotechnology
      1.4.2 PCR and Beyond
1.5 Genome Sequencing
      1.5.1 Sequencing Overview
      1.5.2 Human Genome
2 Biomolecular Structure and Modeling: Problem and Application Perspective
2.1 Computational Challenges
      2.1.1 Bioinformatics
      2.1.2 Structure From Sequence
2.2 Protein Folding
      2.2.1 Folding Views
      2.2.2 Folding Challenges
      2.2.3 Folding Simulations
      2.2.4 Chaperones
      2.2.5 Unstructured Proteins
2.3 Protein Misfolding
      2.3.1 Prions
      2.3.2 Infectious Proteins?
      2.3.3 Hypotheses
      2.3.4 Other Misfolding Processes
      2.3.5 Function From Structure
2.4 Practical Applications
      2.4.1 Drug Design
      2.4.2 AIDS Drugs
      2.4.3 Other Drugs
      2.4.4 A Long Way To Go
      2.4.5 Better Genes
      2.4.6 Designer Foods
      2.4.7 Designer Materials
      2.4.8 Cosmeceuticals
3 Protein Structure Introduction
3.1 Machinery of Life
      3.1.1 From Tissues to Hormones
      3.1.2 Size and Function Variability
      3.1.3 Chapter Overview
3.2 Amino Acid Building Blocks
      3.2.1 Basic C Unit
      3.2.2 Essential and Nonessential Amino Acids
      3.2.3 Linking Amino Acids
      3.2.4 The Amino Acid Repertoire
3.3 Sequence Variations in Proteins
      3.3.1 Globular Proteins
      3.3.2 Membrane and Fibrous Proteins
      3.3.3 Emerging Patterns from Genome Databases
      3.3.4 Sequence Similarity
3.4 Protein Conformation Framework
      3.4.1 The Flexible phi and psi and Rigid omega Dihedral Angles
      3.4.2 Rotameric Structures
      3.4.3 Ramachandran Plots
      3.4.4 Conformational Hierarchy
4 Protein Structure Hierarchy
4.1 Structure Hierarchy
4.2 Helices
      4.2.1 Classic - Helix
      4.2.2 310 and Helices
      4.2.3 Left - Handed - Helix
      4.2.4 Collagen Helix
4.3 - Sheets: A Common Secondary Structural Element
4.4 Turns and Loops
4.5 Supersecondary and Tertiary Structure
      4.5.1 Complex 3D Networks
      4.5.2 Classes in Protein Architecture
      4.5.3 Classes are Further Divided into Folds
4.6 - Class Folds
      4.6.1 Bundles
      4.6.2 Folded Leafs
      4.6.3 Hairpin Arrays
4.7 - Class Folds
      4.7.1 Anti - Parallel Domains
      4.7.2 Parallel and Antiparallel Combinations
4.8 / and + - Class Folds
      4.8.1 / Barrels
      4.8.2 Open Twisted / Folds
      4.8.3 Leucine-Rich / Folds
      4.8.4 + Folds
      4.8.5 Other Folds
4.9 Number of Folds
      4.9.1 Finite Number?
4.10 Quaternary Structure
      4.10.1 Viruses
      4.10.2 From Ribosomes to Dynamic Networks
4.11 Structure Classification
5 Nucleic Acids Structure Minitutorial
5.1 DNA, Life's Blueprint
      5.1.1 The Kindled Field of Molecular Biology
      5.1.2 DNA Processes
      5.1.3 Challenges in Nucleic Acid Structure
      5.1.4 Chapter Overview
5.2 Basic Building Blocks
      5.2.1 Nitrogenous Bases
      5.2.2 Hydrogen Bonds
      5.2.3 Nucleotides
      5.2.4 Polynucleotides
      5.2.5 Stabilizing Polynucleotide Interactions
      5.2.6 Chain Notation
      5.2.7 Atomic Labeling
      5.2.8 Torsion Angle Labeling
5.3 Conformational Flexibility
      5.3.1 The Furanose Ring
      5.3.2 Backbone Torsional Flexibility
      5.3.3 The Glycosyl Rotation
      5.3.4 Sugar/Glycosyl Combinations
      5.3.5 Basic Helical Descriptors
      5.3.6 Base - Pair Parameters
5.4 Canonical DNA Forms
      5.4.1 B-DNA
      5.4.2 A-DNA
      5.4.3 Z-DNA
      5.4.4 Comparative Features
6 Topics in Nucleic Acids Structure: DNA Interactions and Folding
6.1 Introduction
6.2 DNA Sequence Effects
      6.2.1 Local Deformations
      6.2.2 Orientation Preferences in Dinucleotide Steps
      6.2.3 Orientation Preferences in Dinucleotide Steps With Flanking Sequence Context: Tetranucleotide Studies
      6.2.4 Intrinsic DNA Bending in A-Tracts
      6.2.5 Sequence Deformability Analysis Continues
6.3 DNA Hydration and Ion Interactions
      6.3.1 Resolution Difficulties
      6.3.2 Basic Patterns
6.4 DNA/Protein Interactions
6.5 Cellular Organization of DNA
      6.5.1 Compaction of Genomic DNA
      6.5.2 Coiling of the DNA Helix Itself
      6.5.3 Chromosomal Packaging of Coiled DNA
6.6 Mathematical Characterization of DNA Supercoiling
      6.6.1 DNA Topology and Geometry
6.7 Computational Treatments of DNA Supercoiling
      6.7.1 DNA as a Flexible Polymer
      6.7.2 Elasticity Theory Framework
      6.7.3 Simulations of DNA Supercoiling
7 Topics in Nucleic Acids Structure: Noncanonical Helices and RNA Structure
7.1 Introduction
7.2 Variations on a Theme
       7.2.1 Hydrogen Bonding Patterns in Polynucleotides
       7.2.2 Hybrid Helical/Nonhelical Forms
       7.2.3 Overstretched and Understretched DNA
7.3 RNA Structure and Function
       7.3.1 DNA's Cousin Shines
       7.3.2 RNA Chains Fold Upon Themselves
       7.3.3 RNA's Diversity
       7.3.4 Non-Coding and Micro-RNAs
       7.3.5 RNA at Atomic Resolution
7.4 Current Challenges in RNA Modeling
       7.4.1 RNA Folding
       7.4.2 RNA Motifs
       7.4.3 RNA Structure Prediction
7.5 Application of Graph Theory to Studies of RNA Structure and Function
       7.5.1 Graph Theory
       7.5.2 RNA-As-Graphs (RAG) Resource
8 Theoretical and Computational Approaches to Biomolecular Structure
8.1 Merging of Theory and Experiment
       8.1.1 Exciting Times for Computationalists!
       8.1.2 The Future of Biocomputations
       8.1.3 Chapter Overview
8.2 QM Foundations
       8.2.1 The Schrodinger Wave Equation
       8.2.2 The Born-Oppenheimer Approximation
       8.2.3 Ab Initio
       8.2.4 Semi-Empirical QM
       8.2.5 Recent Advances in Quantum Mechanics
       8.2.6 From Quantum to Molecular Mechanics
8.3 Molecular Mechanics Principles
       8.3.1 The Thermodynamic Hypothesis
       8.3.2 Additivity
       8.3.3 Transferability
8.4 Molecular Mechanics Formulation
       8.4.1 Configuration Space
       8.4.2 Functional Form
       8.4.3 Some Current Limitations
9 Force Fields
9.1 Formulation of the Model and Energy
9.2 Normal Modes
       9.2.1 Characteristic Motions
       9.2.2 Spectra of Biomolecules
       9.2.3 Spectra As Force Constant Sources
       9.2.4 In-Plane and Out-of-Plane Bending
9.3 Bond Length Potentials
       9.3.1 Harmonic Term
       9.3.2 Morse Term
       9.3.3 Cubic and Quartic Term
9.4 Bond Angle Potentials
       9.4.1 Harmonic and Trigonometric Terms
       9.4.2 Cross Bond Stretch / Angle Bend Terms
9.5 Torsional Potentials
       9.5.1 Origin of Rotational Barriers
       9.5.2 Fourier Terms
       9.5.3 Torsional Parameter Assignment
       9.5.4 Improper Torsion
       9.5.5 Cross Dihedral/Bond Angle and Improper/Improper Dihedral Terms
9.6 van der Waals Potential
       9.6.1 Rapidly Decaying Potential
       9.6.2 Parameter Fitting From Experiment
       9.6.3 Two Parameter Calculation Protocols
9.7 Coulombic Potential
       9.7.1 Coulomb's Law: Slowly Decaying Potential
       9.7.2 Dielectric Function
       9.7.3 Partial Charges
9.8 Parameterization
       9.8.1 A Package Deal
       9.8.2 Force Field Comparisons
       9.8.3 Force Field Performance
10 Nonbonded Computations
10.1 Computational Bottleneck
10.2 Reducing Computational Cost
       10.2.1 Simple Cutoff Schemes
       10.2.2 Ewald and Multipole Schemes
10.3 Spherical Cutoff Techniques
       10.3.1 Technique Categories
       10.3.2 Guidelines for Cutoff Functions
       10.3.3 General Cutoff Formulations
       10.3.4 Potential Switch
       10.3.5 Force Switch
       10.3.6 Shift Functions
10.4 Ewald Method
       10.4.1 Periodic Boundary Conditions
       10.4.2 Ewald Sum and Crystallography
       10.4.3 Morphing a Conditionally Convergent Sum
       10.4.4 Finite-Dielectric Correction
       10.4.5 Ewald Sum Complexity
       10.4.6 Resulting Ewald Summation
       10.4.7 Practical Implementation
10.5 Multipole Method
       10.5.1 Basic Hierarchical Strategy
       10.5.2 Historical Perspective
       10.5.3 Expansion in Spherical Coordinates
       10.5.4 Biomolecular Implementations
       10.5.5 Other Variants
10.6 Continuum Solvation
       10.6.1 Need for Simplification!
       10.6.2 Potential of Mean Force
       10.6.3 Stochastic Dynamics
       10.6.4 Continuum Electrostatics
11 Multivariate Minimization in Computational Chemistry
11.1 Optimization Applications
      11.1.1 Algorithmic Understanding Needed
      11.1.2 Chapter Overview
11.2 Fundamentals
      11.2.1 Problem Formulation
      11.2.2 Independent Variables
      11.2.3 Function Characteristics
      11.2.4 Local and Global Minima
      11.2.5 Derivatives
      11.2.6 Hessian Matrix
11.3 Basic Algorithms
      11.3.1 Greedy Descent
      11.3.2 Line Searches
      11.3.3 Trust Region Methods
      11.3.4 Convergence Criteria
11.4 Newton's Method
      11.4.1 Newton in One Dimension
      11.4.2 Newton's Method for Minimization
      11.4.3 Multivariate Newton
11.5 Large-Scale methods
      11.5.1 Quasi-Newton (QN)
      11.5.2 Conjugate Gradient (CG)
      11.5.3 Truncated-Newton (TN)
      11.5.4 Simple Example
11.6 Software
      11.6.1 Popular Newton and CG
      11.6.2 CHARMM's ABNR
      11.6.3 CHARMM's TN
      11.6.4 Comparative Performance on Molecular Systems
11.7 Recommendations
11.8 Future Outlook
12 Monte Carlo Techniques
12.1 Monte Carlo Popularity
      12.1.1 A Winning Combination
      12.1.2 From Needles to Bombs
      12.1.3 Chapter Overview
      12.1.4 Importance of Error Bars
12.2 Random Number Generators
      12.2.1 What is Random?
      12.2.2 Properties of Generators?
      12.2.3 Linear Congruential Generators
      12.2.4 Other Generators
      12.2.5 Artifacts
      12.2.6 Recommendations
12.3 Gaussian Random Variates
      12.3.1 Manipulation of Uniform Random Variables
      12.3.2 Normal Variates in Molecular Simulations
      12.3.3 Odeh/Evans
      12.3.4 Box/Muller/Marsaglia
12.4 Monte Carlo Means
      12.4.1 Expected Values
      12.4.2 Error Bars
      12.4.3 Batch Means
12.5 Monte Carlo Sampling
      12.5.1 Probability Density Function
      12.5.2 Equilibria or Dynamics
      12.5.3 Ensembles
      12.5.4 Importance Sampling
12.6 MC Applications
       12.6.1 General attractiveness
       12.6.2 Biased MC
       12.6.3 MC and MD
       12.6.4 Parallel Tempering and Other MC Variants
13 Molecular Dynamics: Basics
13.1 Introduction
      13.1.1 Why Molecular Dynamics?
      13.1.2 Background
      13.1.3 Outline of MD Chapters
13.2 Laplace's Vision
      13.2.1 The Dream
      13.2.2 Deterministic Mechanics
      13.2.3 Neglect of Electronic Motion
      13.2.4 Critical Frequencies
      13.2.5 Electronic/Nuclear Treatment
13.3 Basics
      13.3.1 Following Motion
      13.3.2 Trajectory Quality
      13.3.3 Initial System Setting
      13.3.4 Trajectory Sensitivity
      13.3.5 Simulation Protocol
      13.3.6 High-Speed Implementations
      13.3.7 Analysis and Visualization
      13.3.8 Reliable Numerical Integration
      13.3.9 Computational Complexity
13.4 Verlet Algorithm
      13.4.1 Position and Velocity Propagation
      13.4.2 Leapfrog, Velocity Verlet, and Position Verlet
13.5 Constrained Dynamics
13.6 Various MD Ensembles
      13.6.1 Ensemble Types
      13.6.2 Simple Algorithms
      13.6.3 Extended System Methods
14 Molecular Dynamics: Further Topics
14.1 Introduction
14.2 Symplectic Integrators
      14.2.1 Symplectic Transformation
      14.2.2 Harmonic Oscillator Example
      14.2.3 Linear Stability
      14.2.4 Timestep-Dependent Rotation in Phase Space
      14.2.5 Resonance Condition for Periodic Motion
      14.2.6 Resonance Artifacts
14.3 Multiple-Timestep (MTS) Methods
      14.3.1 Basic Idea
      14.3.2 Extrapolation
      14.3.3 Impulses
      14.3.4 Resonances in Impulse Splitting
      14.3.5 Resonance Artifacts in MTS
      14.3.6 Resonance Consequences
14.4 Langevin Dynamics
      14.4.1 Uses
      14.4.2 Heat Bath
      14.4.3 Effect of
      14.4.4 Generalized Verlet for Langevin Dynamics
      14.4.5 LN Method
14.5 Brownian Dynamics (BD)
      14.5.1 Brownian Motion
      14.5.2 Brownian Framework
      14.5.3 General Propagation Framework
      14.5.4 Hydrodynamics
      14.5.5 BD Propagation
14.6 Implicit Integration
      14.6.1 Implicit vs. Explicit Euler
      14.6.2 Intrinsic Damping
      14.6.3 Computational Time
      14.6.4 Resonance Artifacts
14.7 Enhanced Sampling Methods
      14.7.1 Overview
      14.7.2 Harmonic-Analysis Based Techniques
      14.7.3 Other Coordinate Transformations
      14.7.4 Coarse Graining Models
      14.7.5 Biasing Approaches
      14.7.6 Variations in MD Algorithm and Protocol
      14.7.7 Other Rigorous Approaches for Deducing Mechanisms, Free Energies, and Reaction Rates
14.8 Future Outlook
      14.8.1 Integration Ingenuity
      14.8.2 Current Challenges
15 Similarity and Diversity in Chemical Design
15.1 Introduction to Drug Design
      15.1.1 Chemical Libraries
      15.1.2 Early Days
      15.1.3 Rational Drug Design
      15.1.4 Automated Technology
      15.1.5 Chapter Overview
15.2 Database Problems
      15.2.1 Database Analysis
      15.2.2 Similarity and Diversity Sampling
      15.2.3 Bioactivity
15.3 General Problem Definitions
      15.3.1 The Dataset
      15.3.2 The Compound Descriptors
      15.3.3 Biological Activity
      15.3.4 The Target Function
      15.3.5 Scaling Descriptors
      15.3.6 The Similarity and Diversity Problem
15.4 Data Compression and Cluster Analysis
      15.4.1 PCA compression
      15.4.2 SVD compression
      15.4.3 PCA and SVD
      15.4.4 Projection Application
      15.4.5 Example
15.5 Future Perspectives
Appendix A Syllabus
Appendix B Article Reading List
Appendix C Supplementary Course Texts
Appendix D Homeworks
Bibliography
References




Back to the Main Page of the Book