This is page 565 Printer: Opaque this

Appendix A Molecular Modeling Sample Syllabus

<u>Please Note</u>: Article numbers in the Homework column refer to items in the course reading list (Appendix B).

Class	Subject	Homework
1	 Course and Field Overview: What is molecular modeling and how has it evolved? What are the practical applications and important questions? 	1: Introduction to sequence and structural databases and to the early molecular modeling litera- ture. <i>Read papers</i> 1,2,3,20,33,42,
	(Preface and Chapter 1)	44,47,52,54,58.
2	 Commutation of the overview on ordering and simulation, from drug design to new materials. Discussion of the 1959 paper of Alder & Wainwright and 1971 work of Rahman & Stillinger: difficulties then and now. Introduction to interesting biomolecular modeling problems: protein folding, protein misfolding, nucleic acid/protein interactions, and RNA folding. (Chapter 2) 	2: Retrieval of structural informa- tion from the Protein Data Bank (PDB), and the display, manip- ulation, and analysis of three- dimensional biomolecular struc- tures with the Insight II molec- ular graphics package. Explore kinemage tutorials. <i>Read papers 5,8,30,31,34,37</i>
3	 Minitutorial on protein structure: amino acid repertoire, primary to quaternary structure, protein structure classification. Kinemage tutorial demonstration: folding motifs and major protein classes. (Chapters 3 & 4) 	3 : Construction and analysis of the pentapeptide Met-enkephalin with the Insight II program. <i>Read papers 2,4,6.</i>
4	 Discuss homework assignments 1 and 2. Minitutorial on nucleic acid structure: building blocks, backbone conformational flexibility, helical parameters, and DNA supercoiling. (Chapters 5–7) 	4: Generation and analysis of Ra- machandran plots for proteins and introduction to the NDB. <i>Read papers 23,29,47,50.</i>
5	Guest Lecturer: <i>The Nucleic Acid Database and</i> <i>the 'New Protein Databank' (RCSB)</i> , Prof. He- len Berman (Rutgers University, Department of Chemistry), Director of NDB and RCSB.	5 : Analysis of Protein/DNA Complexes with Insight and NDB. <i>Read papers 7, 21.</i>
	• Discuss homework assignment 4.	6 (MIDTERM):
6	• Computational and theoretical approaches to struc- ture prediction (from the quantum-mechanical to the molecular mechanical description).	Sequence/Structure/Function Relationships in Proteins, A Contest!
	(Chapters 8 & 9)	Read papers 22,36,38,56.

566 Appendix A. Molecular Modeling Sample Syllabus

Table A.1: (continued)

Week	Subject	Homework
7	Guest Lecturer: <i>Protein Structure Modeling</i> , Dr. Andrej Sali, expert in protein modeling.	7: Molecular mechanics force fields: approximations, variations, and the assessment of results with respect to experiment and other simulations (<i>papers 10,11,15,16</i>). <i>Read papers 13,14,17,24</i> .
8	Modeling in Biological Systems: 1 – Peter Koll- man, "Methods in Molecular Modeling", 4 – Panel Discussion.	
9	Guest Lecturer: <i>Ab Initio Calculation of Protein</i> <i>Structure by Global Optimization of Potential En-</i> <i>ergy</i> , Prof. Harold Scheraga (Cornell University, Department of Chemistry), pioneer of protein force fields and computation of protein structure.	8: A bit of programming: non- bonded versus bonded energy computations.
10	MIDTERM class presentations	
11	Continue MIDTERM presentations. Force Field Debate!	9 (TERM PROJECT) : The Successes (Failures?) of Molecular Modeling. <i>Read papers 9,18,19.</i>
12	 Molecular mechanics force fields — origin, variations, and parameterization. Special topics — molecular topology: bookkeeping and data structures, potential energy differentiation. Special issues in nonbonded energy computations — spherical cutoffs, fast electrostatics by the multipole method, periodic boundary conditions, and the Ewald summation. 	10 : Experiments in Geometry Structure Optimization: Mini- mization of Biphenyl with Insight II/Discover. <i>Read paper 12</i> .
13	 (Chapter 10) Go over Assignment 8, including general discussion of programming and timing strategies. Optimization techniques for multivariate functions in computational chemistry. (Chapter 11) 	11 : A global optimization contest for a pentapeptide! <i>Read papers 25,26.</i>
14	Monte Carlo Simulations. (Chapter 12)	 12: An exercise in Monte Carlo. 13 (Optional): Advanced exercises in minimization and MC. <i>Read papers</i> 27,28,32,41, 53,57,59.
15	Molecular dynamics simulations — theory and practice. (Chapters 13 & 14)	14 (Optional): Advanced exercises in molecular dynamics.15 (Optional): Scaling of protein conformations and folding simulations.