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Because the functional repertiore of RNA molecules, like proteins, is closely
linked to the diversity of their shapes, uncovering RNA’s structural
repertoire is vital for identifying novel RNAs, especially in genomic
sequences. To help expand the limited number of known RNA families, we
use graphical representation and clustering analysis of RNA secondary
structures to predict novel RNA topologies and their abundance as a
function of size. Representing the essential topological properties of RNA
secondary structures as graphs enables enumeration, generation, and
prediction of novel RNA motifs. We apply a probabilistic graph-growing
method to construct the RNA structure space encompassing the topologies
of existing and hypothetical RNAs and cluster all RNA topologies into two
groups using topological descriptors and a standard clustering algorithm.
Significantly, we find that nearly all existing RNAs fall into one group,
which we refer to as “RNA-like”; we consider the other group “non-RNA-
like”. Our method predicts many candidates for novel RNA secondary
topologies, some of which are remarkably similar to existing structures;
interestingly, the centroid of the RNA-like group is the tmRNA fold, a
pseudoknot having both tRNA-like and mRNA-like functions. Addition-
ally, our approach allows estimation of the relative abundance of
pseudoknot and other (e.g. tree) motifs using the “edge-cut” property of
RNA graphs. This analysis suggests that pseudoknots dominate the RNA
structure universe, representing more than 90% when the sequence length
exceeds 120 nt; the predicted trend for <100nt agrees with data for
existing RNAs. Together with our predictions for novel “RNA-like”
topologies, our analysis can help direct the design of functional RNAs
and identification of novel RNA folds in genomes through an efficient
topology-directed search, which grows much more slowly in complexity
with RNA size compared to the traditional sequence-based search.
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Introduction

The notion that biological function follows

underway to map protein structures with the aim
of functlonally characterizing protein sequences in
databases;”° the goal of protein structural genomics

structure holds for protein and RNA molecules.
Like proteins, RNAs perform important cellular
functlons, and exhibit a repertoire that is expanding
rapidly."™ Uncovering the range of RNA's struc-
tural repertoire is a key to understanding the
functional diversity of the RNA universe. Indeed,
protein structural genomics projects are well
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is to systematically determine novel protein fold
classes and estimate the number of such classes.” In
contrast to proteins, such important developments
have not been matched for RNA molecules despite
the growing recognition of their functional impor-
tance. A parallel effort to uncover the structural
repertoire of RNA molecules will lead to a more
Comprehenswe mapping of functional molecules in
the cell.® To help close the gap of what we know
about protein and RNA structure worlds, we
describe applications of a novel theoretical
approach to predict RNA-like motifs and estimate
RNA’s structural repertoire based on analyses of
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RNA topological properties and information about
existing RNAs.

RNA molecules are hierarchical, maintaining
independently stable, and conserved, secondary
folds and tertiary structures.” This property implies
that RNA’s function is strongly correlated with its
secondary fold or topology. Analysis of the secon-
dary structure, though certainly incomplete, is less
complex than the tertiary structure and provides an
excellent starting point for investigating RNA
structures. This advantage was exploited in our
recent articles exploring the theoretical RNA secon-
dary structure repertoire and their classification,
where we employed graphical representations to
enumerate, construct, and analyze two-dimensional
(2D) RNA secondary topologies.'”!" Indeed, var-
ious 2D graphical representations have already
shown to be useful for comparing and analyzing
RNA secondary structures.'” RNA graphs
specify the connectivity of the secondary elements
such as stems, loops, bulges, and junctions.
Although the level of representation is coarser
than the atomic-level description, RNA graphs
capture the essential topological properties defining
known RNA families.

A key advantage of this topological approach is
that both existing and hypothetical RNA structural
motifs can be systematically generated and
analyzed, thereby opening a new avenue for
predicting novel RNA motifs and estimating their
abundance in the RNA structure universe. This
strategy is similar to combinatorial chemistry
methods for generating structural diversity and
for discovering novel compounds.'® Thus, predict-
ing novel 2D RNA topologies by specifying the
motif connectivity patterns may be considered as
the equivalent problem of determining the number
of protein fold classes. The more difficult problem of
determining all 3D RNA structure classes will
require both theoretical and experimental efforts.

In a previous work, we have heuristically
generated small RNA topologl'es and described
existing and “missing” motifs.'” Here, we report
candidate novel RNA-like motifs, or topologies
possessing properties similar to existing RNAs,
using graph theory and clustering methods; these
candidates may prove useful for experimental work
in the growing field of RNA design.'®" Specifi-
cally, we develop and apply graph theory methods
to generate libraries of theoretical RNA topologies
of different sizes, quantitatively describe topologi-
cal properties (i.e., topological descriptors) of RNA
motifs, and distinguish different topological types
(pseudoknots and non-pseudoknots). Our topo-
logical descriptors are derived from the eigenvalues
of the (Laplacian) matrix specifying the patterns of
connectivity in the topology." Since not all theo-
retical RNA topologies are physically meaningful,
or RNA-like, we partition libraries of topologies
into two groups to identify the RNA-like group
using topological descriptor variables and a cluster-
ing algorithm Partition Around Medoids (PAM).*

Identification of the RNA-like group in a given

set of theoretical topologies is central to our
prediction scheme. Significantly, we find that most
existing or natural topologies for 60-80 nt RNAs fall
in the RNA-like group; we consider the remaining
motifs less RNA-like. In the RNA-like group, the yet
unfound topologies constitute viable candidates
for novel RNA motifs. Specifically, we found ten
novel motifs in the range of 60-80 nt containing
natural RNA substructures, half of which are
pseudoknots. We have also proposed candidate
sequences that might fold into these motifs. Larger
(>80 nt) candidate RNA motifs are similarly pre-
dicted using our clustering procedure, leading to
sets of RNA-like motifs of different sizes (Figures
7-10, below). We find that the number of novel
motifs increases with RNA size. Interestingly,
existing and candidate RNA-like motifs have
similar topological (Z-score) profiles, whereas the
profile for non-RNA motifs is distinct, implying that
natural motifs have specific topological properties.
Generally, members of the RNA-like group are
compact pseudoknots and branched trees, whereas
non-RNA topologies are unbranched trees and
pseudoknots with domains joined by single
strands.

Another major prediction of our analysis is the
abundance of pseudoknots, trees, and other motifs
in the RNA secondary structure universe. We find
that the proportion of pseudoknots rises rapidly
with RNA size, exceeding 90% when length is
>120 nt, implying that the universe of RNA motifs
is dominated by pseudoknots rather than trees.
Significantly, our predicted trends for pseudoknots
and non-pseudoknots in the range <100 nt agree
with available data for natural motifs. These
predictions were made possible by our develop-
ment of a graph theory algorithm for characterizing
fundamental motif types (e.g. pseudoknot, tree).

Information about RNA's structural repertoire,
even for secondary topologies, will likely benefit
both theoretical and experimental search for novel
functional RNA molecules. For example, novel
motifs can be designed theoretically'” and their
functional properties determined experimentally.
Indeed, modular design of functional RNA mol-
ecules via the RNA in vitro selection technology has
been exploited for possible applications in bio-
technology, chemistry and medicine.'®?' Our
predicted motifs provide a rich source of RNA
topologies for such design efforts. Another
emerging application of novel RNA topologies is
in the computational search for novel RNA genes.
Current RNA gene searches are based on sequence
conservation and information about specific
sequence motifs.”>>* Combining this approach
with the knowledge of novel RNA topologies can
lead to a more effective and comprehensive search
for RNA genes in genome sequences.

The remainder of this article is organized as
follows. The Methods section presents various
techniques and algorithms for representing,
describing, characterizing, and clustering RNA
secondary structures. The Results section presents
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a clustering analysis of sets of RNA topologies into
RNA-like and non-RNA groups and estimation of
the proportion of pseudoknots and trees in RNA
structure space. The Discussion section compares
topological and sequence approaches to finding
novel RNAs, explains factors determining RNA
motif abundance, and explores similarity/dis-
similarity of protein and RNA structural reper-
toires. In the Conclusion section, we briefly discuss
cataloguing of our novel motifs and future
directions.

Methods

The methods and algorithms presented below
include: graphical representation of RNA; the
Laplacian eigenvalue spectrum and associated
transformations as topological descriptors; a prob-
abilistic graph-growing algorithm to generate RNA
graphs; a clustering method called PAM for group-
ing possible RNA graphs; an algorithm for
discriminating pseudoknot and non-pseudoknot
motif types; and a Z-score for profiling the
significance RNA topologies.

Graphical representation of RNA

Discrete graphical representations of RNA struc-
tures have the advantage that topologically distinct
motifs can be theoretically enumerated and
analyzed using available graph theory methods.
The rules for representing RNA pseudoknot and
non-pseudoknot motifs as dual graphs are detailed
in our previous work.'” RNA tree graphs have been
widely used for comparing RNA structures, but
they are limited to tree structures.">"> Thus, dual
graphs are more general than tree graphs. Here, we
use only dual graphs in our analysis. We map an
RNA secondary structure onto a dual graph by the
following rules (see Figure 1(a), inset). (1) A vertex
(@) represents a double-stranded helical stem with
>2 complementary bp. (2) An edge (-) represents
a single strand that may occur in segments
connecting the secondary elements (e.g. bulges,
loops, junctions, and stems), where a bulge has
more than one unmatched nucleotide or non-
complementary base-pair; we consider AU, GC
and GU as complementary base-pairs. Essentially,
RNA graphs represent the topological properties of
the connectivity pattern among RNA’s secondary
structural elements, such as loops, bulges, stems,
and junctions; for example, the star-shaped transfer
RNA (tRNA) is topologically distinct from the
branched structure of 5S ribosomal RNA. Each
vertex in a dual graph represents about 20 nt. The
complete sets of RNA dual graph from two to four
vertices, together with examples of larger topol-
ogies, are documented on our RNA-As-Graphs
(RAG) databasef; RAG also separately catalogues
RNA tree graphs with up to ten vertices.

1 http://monod.biomath.nyu.edu/rna

The double helical stems of RNAs imply specific
rules for the construction of RNA dual graphs. An
interior stem is connected to other stems by four
strands (two incoming and two outgoing), whereas
end stems (at the 3’ and 5’ ends) can have fewer
connectors (see Figure 1(a), inset). A stem with four
emanating strands is represented by a vertex with
four radiating (incident) edges (see nodes labeled
with 4 in Figure 1(a), inset). If the ends occur on the
same stem, then it is represented by a vertex with
two incident edges (see node labeled with 2). The
case where the ends terminate on two different
stems, the two stems are represented as vertices
with three incident edges each (see node labeled
with 3). Thus, the two allowed vertex patterns for
RNA dual graphs are (4,...4,2) and (4,...,4,3,3),
which are also called degree sequences in graph
theory.”

Topological descriptors of RNA graphs:
spectrum of the Laplacian matrix and associated
transformations

An RNA secondary topology can be intuitively
characterized by the number of hairpin loops,
junctions, bulges, and stems, as well as their
connectivity properties. These parameters are
examples of RNA topological descriptors. Here,
we develop topological descriptors based on spec-
tral representations of the connectivity of RNA
topologies. In graph theory, the connectivity of an
RNA graph is quantified using an adjacency matrix
(A). The adjacency matrix and associated eigen-
values also aid characterization of isomorphism
(similarity) between graphs (S. Pasquali, HH.G. &
T.S., unpublished results). Specifically, we use the V
by V Laplacian matrix (L) representation of V-vertex
graphs constructed from the symmetric adjacency
(A) and degree (D) matrices. Namely, the square
Laplacian matrix L(G) of a graph G with vertices
1,2,...,Vis defined as L=D — A, where each element
Aj; specifies the number of links or edges connecting
i and j vertices, and D;; specifies the degree of
connectivity of vertex i. A V-vertex graph is
characterized by the ordered eigenvalues 0= <
A <Ay of L(G), called the spectrum of G, which is
independent of the labeling of graph vertices. If the
Laplacian spectra of two graphs are different, the
graphs are not isomorphic; the converse, however,
is not true because identical spectra can be
associated with different topologies.*

The pattern of a graph’s connectivity is related to
its eigenvalue spectrum. For example, the number
of zeros in the spectrum represents the number of
disconnected components of the graph. The second
eigenvalue A\, measures compactness: a linear chain
has a smaller second eigenvalue than a branched
structure. The Laplacian eigenvalues are examples
of topological descriptors; many other molecular
structure descriptors have also been used.'**”*3

To capture essential topological features of an
RNA dual graph, we reduce the number of
descriptors from the set of positive Laplacian


http://monod.biomath.nyu.edu/rna

1132

Candidates for Novel RNA Topologies

2vertex

C—O (o

bulged hairpin

(Rfam:CopA)  single strand RNA viral frameshift
(NDB:PR0055) (PKB217)

3vertex

o—L—-o (XY

DsrA RNA single strand RNA
(Rfam:DsrA) (NDB:PR0037)

X

(@) RNA secondary structure Graph representation

908 oho
?JIOJICEO
‘ 0—0

Neurospora Vs Pseudoknot Tree( ) Bridge(1)
aptamer (PKB131) ribozyme (PKB178)
4vertex E
Box H/ACA snoRNA 70S(F) ribosome  P5abc domain wral tRNA like : ;
(Rfam:HACA_sno_Snake) (NDB:RR0003)  Of group ' ”bozyme (PKB143) {RNA
IRES domain (PKB208) g signal recognition tmRNA
IRES region 18S rRNA (PKB205) SI9 g
(PK5228) {mBNA (PKB234)  Particle RNA (PKB163) (PKB67)
Svertex
RNA in signal g % %
recognition complex  gatRPV ribozyme ) viral tRNAlike
HIV1 5°UTR
(NDB:PR0042) (PKB173) (PK8239) (PKB191)
g viral 3 UTR HDV rib :
viral tRNAlike (PKB238) (pKB” PAYME {RNA (leu)
(PKB138)
6vertex 7vertex
tmRNA viral tRNAlike viral tRNAlike
(PKB210) (PKB135) (PKB137)

Figure 1. Existing RNA topologies for two to seven vertices and (inset) RNA graph representations. The 28 existing
RNA topologies include both entire RNAs and RNA domains. The RNAs are from Nucleic Acids Database (NDB), RNA
families database (Rfam), and Pseudobase (PKB). In the inset box, the RNA secondary structures and their dual graph
representations, with labeled vertex degrees (incident edges) are shown in (a), and the minimal edge-cut numbers for
three RNA motif types: pseudoknot, tree, and bridge, are shown in (b).

eigenvalues A,,...,Ay to two variables o and B: the
positive slope B and the intercept a are calculated
using the least-squares method applied to A,,..., Ay
Thus, B measures the average spacing between
positive eigenvalues, and the intercept o represents
the second largest eigenvalue calibrated by . This
variable reduction is commonly used in clustering
analysis such as performed in drug design, known

as quantitative structure-activity relationships
(QSAR).*

We found that B decreases with V, and therefore,
it is reasonable to consider V*B as a quantity
independent of V. We thus characterize an RNA
dual graph using o and V*B. That is, we represent
each graph by (V*B, o) and use these quantities to
perform clustering of RNA-like and non-RNA-like
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Table 1. Number of theoretical, existing, and candidate (RNA-like) RNA topologies with two to nine vertices; each vertex

represents about 20 nt

V, vertex no.

2 3 4 5 6 7 8 9
Theoretical 3 8 30 108 494 2388 12,184 38,595
Existing 3 4 10 8 2 1
RNA-like 2 8 64 307 1604 8777 25,810

motifs. For example, in Figure 1(a) (inset), a linear
chain graph with three vertices and three loops is
characterized by a=-—1 and V*=6 (A;=1 and
A3=3). In contrast, the more compact graph with
three vertices and no loop (Neurospora VS topology
in Figure 1) yields a=2 and V*B=6 (=4 and
7\3:6)

Further information for graph characterization
can be gained by considering powers of the
Laplacian spectrum. By definition, L satisfies:
L"x;=N\'x;, where n=1,2,...,N, i=1,...,V and x; is
an eigenvector corresponding to A'. Thus, by
variable reduction we can associate the spectrum
{\'} of L" to (V*B,,0,), where B, and o, are the
spectrum’s slope and intercept, respectively. For an
N order Laplacian, the descriptor variable set is
{(V*By,21),...,(V*Bn,an)}; N will be determined by
clustering analysis in Results.

Computational generation of RNA graphs using
a graph-growing algorithm

We can theoretically generate the space of all
RNA secondary topologies using the rules for
constructing dual graphs, i.e. each graph must
satisfy the vertex-degree sequence (4,...,4,2) or
(4,...4,3,3). Specifically, we use a probabilistic
graph-growing method to generate each connected
V-vertex RNA graph. In this stepwise algorithm,
two initial vertices are randomly selected from a set
of V vertices and connected either by one, two, or
three edges. The number of edges connecting any
two vertices is chosen based on a random uniform
distribution.®® To proceed, the next vertex is
randomly picked and connected to the previous
vertex until all V vertices are connected. The graphs
generated by this method are automatically
connected, since the previous vertex is selected
from a connected subgraph. The above process is
reiterated so as to generate an ensemble of RNA
dual graphs after many graph-growing cycles.

Our algorithm can lead to isomorphic graphs (i.e.
equivalent topologies). We thus trim the ensemble
by removing isomorphic graphs to ensure that no
Laplacian spectra are repeated. This method is
imperfect, since some non-isomorphic graphs have
the same Laplacian spectrum, but the error for dual
graphs is generally a few percent.'"?! Indeed, no
existing graph spectra (invariants) are capable of
discriminating all non-isomorphic graphs. We use
the Laplacian spectra to determine the convergence
of our graph growing cycles by ensuring that the
number of non-isomorphic graphs in the ensemble

of dual graphs is not increasing. We verified that
our graph-growing algorithm and isomorphism test
can successfully generate V=2, 3, 4 dual graphs,
which were previously determined heuristically."
For the cases of V=5, 6, 7 and 8, our algorithm
generates 108, 494, 2388 and 12,184 distinct RNA
dual graphs, respectively, as listed in Table 1.

Clustering of RNA graphs into RNA-like and non-
RNA-like groups using partitioning around
medoids (PAM)

To distinguish RNA-like from non-RNA-like
graphs, we employ the well-known clustering
technique called PAM (pam function implemented
in the cluster library package of R, an environment
for statistical computing and graphicst to group
enumerated graphs.”’ Essentially, to cluster k most
diverse groups, PAM chooses k centering points of
the distribution and determines which point is
included in which group. This algorithm computes
k representative objects, or medoids, and assigns
members in each group by minimizing the
medoid’s dissimilarity to all the objects in the
cluster. This procedure is repeated until the total
Euclidean distance between the medoids and the
objects in the group converges. Recently, PAM was
used to analyze protein structure similarity.**

Quantitatively, to analyze similarity and diversity
of RNA graphs, we use the Euclidean distance 8;;=
f(G;i,G)) for two graphs G; and G; based on the
topological descriptors (V*B,,0,,) forn=1,...,N of an
RNA dual graph. We then construct the symmetric
matrix D={3;} for ij=1,...,K, where K is the
number of graphs considered.” To find the simi-
larity within a group, the PAM algorithm minimizes
the total Euclidean distance between members
in the group, i.e. the intragroup distance. To search
the diversity, PAM selects the medoids to maximize
the intergroup distance for k groups. PAM combines
the search for similarity and diversity in the set with
K graphs by iteratively optimizing selection of k
representatives, maximizing intergrougp distance,
and minimizing intragroup distance.’>”*

To visualize the PAM clustering, we project 2N
dimensions of the descriptors (V*B,, a,), n=1,...,N
of an RNA dual graph into m (usually two or three)
dimensions, using the multi-dimensional scaling
(MDS) method.**”*> The MDS projection preserves
the original distance matrix D ={3;;} as possible. The

1 http:/ /www.r-project.org/
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m-dimensional vector for an RNA dual graph G; is
determined by the singular value decom osition
(S5VD) method in numerical linear algebra We use
MDS as implemented in the cmdscale function from
the multivariable analysis library package of Rf.

Characterization of RNA pseudoknot and non-
pseudoknot graphs

Our dual graph generation algorithm produces
large numbers of RNA graphs belonging to pseudo-
knot and non-pseudoknot motif types; Table 1
shows that there are over 12,000 eight-vertex
(~160 nt) graphs. The RNA secondary structure
universe can be partitioned into tree, pseudoknot
and bridge motif types (see Figure 1(b), inset).'” An
RNA bridge refers to a topology with substructures
that are connected by a single strand (a more precise
definition is given below). Bridge motifs are
biologically meaningful because they can suggest
modular RNA motifs. The abundance of various
RNA types in Nature can be predicted by char-
acterizing or determining the RNA type of each
hypothetical graph. We develop an algorithm based
on graph properties to automate the process of
differentiating pseudoknot, tree and bridge motifs.
Our algorithm is based on the concept of edge cut,
or equivalently, Eulerian tour.® Here, edge-cut is
defined as the minimal number of edges whose
removal makes the graph disconnected.

An RNA secondary structure is a pseudoknot if
its graphical representation contains a non-Eulerian
subgraph. An Eulerian tour is a walk defined as an
alternating sequence of vertices (v;) and edges
(e:), vo,€0,01,61,...,0v, ending w1th the starting vertex,
vo=0y, where all ¢; are distinct.”® An Eulerian graph
is a graph that has an Eulerian tour. A well-known
property of an Eulerian graph is that it should have
an even number of edge cuts.**® RNA trees,
pseudoknots and bridges can be categorized as
distinct topological types by their edge-cut
property. As shown in Figure 1(b) (inset), RNA
pseudoknots are characterized by at least a minimal
edge-cut with three edges, RNA trees by a minimal
edge-cut with two edges, and RNA bridges by a
minimal edge-cut with one edge. A bridge graph
can also be a pseudoknot if it contains a pseudoknot
subgraph. To be consistent with the biological
literature, we classify a graph as a pseudoknot if it
has a pseudoknot subgraph. (Note that in our
previous usage a bridge graph w1th a pseudoknot
subgraph is also a bridge graph.'’) Likewise, we
classify a graph as a bridge even though it has a tree
subgraph with a bridge structure. Based on these
conditions, we define the RNA pseudoknot, bridge
and tree topological types as follows.

Let G be any RNA graph, then: (1) G is a
pseudoknot if and only if there exists three or four
edge-cuts from the same vertex of G such that G
becomes an (M +1)-component graph, where M is

thttp:/ /www.r-project.org/

the number of disconnected components of G after
all bridges are removed. (2) G is a bridge if and only
if there exists one edge cut of G that creates two
components. (3) G is a tree if and only if it is neither
a pseudoknot nor a bridge.

By using these definitions for RNA motif types,
we construct an algorithm to determine the char-
acter of any RNA graph. We note that self-loop (or
hairpin loop) structures do not affect the graph
character, because it is determined only by the
connectivity between different stems or vertices.
Consequently, self-loops are removed in our calcu-
lations. Our algorithm is as follows. First, we
remove all edges having one edge-cut property.
We can count the number of components by the
number of zeros of the spectrum of Laplacian.””
Second, we check which of the following cases is
true.

Case 1. If there is a component of G with three or
four edge-cut property, we characterize the graph as
a pseudoknot.

Case 2. If the number of components of G after
removing all edges with one-edge-cut property is
greater than two and G has no pseudoknot
subgraph (Case 1), we characterize G as a bridge.

Case 3. If G is neither case 1 nor case 2, we
characterize G as a tree.

Our algorithm can characterize the topological
types of all enumerated RNA graphs.

Z-score for profiling the significance of RNA
motifs

We consider a Z-score to profile sets of
RNA graphs based on the topological descriptors
{V*B1,00,V*Bo,0z,..., V*BN,ont. For tig, descriptor i of
graph G, we define the normalized Z-score as:

G — (tiG — <tiG))/Std(tiG)

where (t;c) and std(t,c) are the mean and standard
deviation of each descriptor in a set of graphs. The
significance profile of descriptor i of graph G is:

2N
SP{G = ZiG/ Z ZZZG (1)
\ =1

It is a normalized vector of Z-scores. Profiling a set
of graphs using SP;c allows comparison of sub-
group properties (e.g. RNA-like or non-RNA-like)
within the set.

Results

We examine several aspects emerging from our
RNA graph analysis: clustering of RNA motifs into
RNA-like and non-RNA-like groups; significance
profiles of RNA motifs; candidate novel RNA
motifs; and relative abundance of pseudoknot,
tree and other motifs in RNA universe. Our analysis
relies on existing RNA topologies complied in
Figure 1 from various sources in the literature and
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Topological descriptors map RNA motif classes
and campactness

We examine the RNA motif features displayed by
topological descriptors o, and B; by plotting in
Figure 2 the intercept a; versus slope By correspond-
ing to the spectrum of L for eight three-vertex RNA

® existing RNA
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graphs. Interestingly, the o4,B; plot maps RNA
topologies according to characteristics such as
compactness and the number of hairpin loops.
Figure 2 has four linear lines representing possible
zero, one, two, three hairpin loops for three-vertex
graphs or motifs. For example, the three one-loop
motifs lie on a straight line; there is only one three-
loop motif. Similarly, for the 30 four-vertex motifs,
there are five lines representing zero to four
possible hairpin loops (data not shown). Generally,
a linear topology with one or more “bridge” strands
has a large B; and a small a4, whereas a compact
graph has a small B; and a large a,. Previously, we
showed that the second eigenvalue A, increases
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with motif compactmess.11 Thus, the a4,B; map
organizes possible RNA motifs into hairpin-loop
classes which are arranged by compactness. Note
that the four existing three-vertex RNAs with zero,
two, three hairpin loops display no discernible
clustering pattern different from hypothetical RNA
motifs.

Clustering of topologies into RNA-like and non-
RNA-like groups

Figure 3 shows 2D clustering of 38 (eight three-
vertex and 30 four-vertex) RNA topologies into two
groups using the PAM algorithm. The smaller RNA
topologies are used since there are 15 existing
motifs. To aid visualization, we have also drawn an
ellipse to enclose 85% of topologies in each group.
As shown, we applied PAM on the same 38 graphs
using Laplacian orders (N=1, 2 and 3); N=1
denotes clustering with (V*By,01) descriptor vari-
ables, N=2 with both (V*B1,a¢) and (V*B,,a5)
descriptor variables, and so on. Significantly, in all
N=1, 2, 3 clusterings, at least 12 out of 15 existing
RNA motifs are clustered in one group, meaning
that the natural RNAs are topological neighbors.
The numbers for topologies clustered in the non-
RNA-like group are 12, 15 and 15 for N=1, 2, 3,
respectively; the number of misclassified motifs
(existing RNAs in the group) is less than three.
Increasing the Laplacian order from 2 to 3 yields
similar results, implying that N=2 is near optimal
for clustering RNA topologies. Moreover, 3D
clustering yields results similar to those in 2D
projection.

We call the group with the majority of existing
RNAs the “RNA-like” class and the other “non-
RNA-like.” Interestingly, the RNA-like group con-
tains 9 to 11 motifs (~30% of total) not yet found in
Nature. We call these RNA topologies the candidate
novel RNA motifs. Our 2D clustering analysis

200 300

RNA dual graphs using Laplacian
orders N=1, 2, 3.

suggests that these predicted motifs are topologi-
cally similar to existing RNAs. To ascertain that our
clustering procedures are not fortuitous, we also
applied the PAM clustering to the 15 existing RNA
motifs belonging to three to four vertex graphs.
Figure 4 shows that for Laplacian orders 2 and 3
there is a disproportionate number (11 or 12) of
graphs in one group. Thus, forcing existing RNAs to
cluster into two groups does not yield a random
partition of motifs. For N=2 case (middle panel,
Figure 4), the three members of the smaller group
(green dots) are DsrA RNA (Rfam:DsrA), tRNA
(NDB:TRNA12), and IRES RNA (PKB:226).

Another prediction from our clustering analysis
includes the medoids of the RNA-like and non-
RNA-like groups. A group’s medoid is its “center of
gravity” exhibiting the common topological
features of the group. In Figure 3, the medoids for
N=1, 2 and 3 are four-vertex motifs of viral 5-UTR
(PKB209), tmRNA (PKB234) and P5abc domain of
group I intron ribozyme. The viral 5-UTR and
tmRNA are pseudoknots, whereas the P5abc
domain is a tree structure. In the optimal N=2
clustering, the occurrence of tmRNA as the center of
the RNA-like group is interesting because most
topologies are pseudoknots and there are two
distinct four-vertex tmRNA motifs (PKB234 and
PKB67). The tmRNA has both tRNA-like and
mRNA-like functions. It participates in a trans-
translation process where the unfinished protein is
tagged for degradation and release from the stalled
ribosome due to a defective mRNA.*

Significance profiles of RNA motifs

Significance profiling of RNA networks provides
another perspective on the clustering of RNA-like
and non-RNA-like groups. This approach was
recently applied to complex biological, techno-
logical, and sociological networks to compare and
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existing RNA
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Q-

J Figure 5. Significance profiles (Z
= scores) of existing RNA, RNA-like
and non-RNA-like topologies with

identify superfamilies of network structures; bio-
logical networks in protein signaling, develop-
mental genetic networks, and neuronal wiring
belong to the same superfamily.*' Figure 5 plots
the normalized Z-score versus the four topological
descriptors (Laplacian order 2) for 38 (three and
four-vertex) existing RNA, RNA-like and non-
RNA-like motifs deduced from the clustering
analysis above. As defined in equation (1), the
normalized Z-score is a measure of the deviation of

respect to four topological
a, descriptors.

a descriptor variable t;c from the mean value {¢;c)
for a set of graphs considered. The figure shows that
the 15 existing RNA topologies display a pattern
distinct from the 13 motifs clustered as non-RNA-
like graphs. Remarkably, our ten predicted novel
RNA-like motifs (Figure 7) have a significance
profile rather similar to that for existing RNAs.
Still, some existing and candidate RNA motifs
display patterns deviating from the general profile.
Thus, the RNA-like topologies may be considered
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as belonging to the same network family. Overall,
significance profiling essentially confirms the val-
idity of clustering possible RNA graphs into RNA-
like and non-RNA groups.

Topologically similar subgroups revealed by
motif clustering

Figure 6 illustrates four subgroups (R1, R2, R3
and R4) within the RNA-like cluster with very
similar topologies or connectivity patterns. R1
subgroup contains an existing linear, three-
stem-loop structure and a predicted linear four-
stem-loop motif. The tRNA fold with four-stem
junction is in the R2 subgroup, which also
contains a predicted RNA-like bridge motif
with a three-stem junction. The R3 and R4
subgroups contain only pseudoknot motifs. R3
contains the tmRNA motif (R3-7), the group’s
medoid, and two other predicted pseudoknots,
one (R3-5) of which only differs from the
tmRNA topology by the location of a stem-
loop. The R4 subgroup has three similar existing
motifs (Neurospora VS, signal recognition particle
RNA, tmRNA) with no hairpin loops and a

predicted topology (R4-8) similar to the HDV
ribozyme (PKB75) except for the absence of a
stem-loop. Analyzing topologically similar sub-
groups may allow inference of the functional
properties of the predicted motifs.

Similarity of predicted novel topologies to
structures of functional RNAs

Figure 7 displays the main results of this work:
ten candidate novel RNA secondary motifs
(C1,...,C10) predicted by our PAM clustering,
including existing RNAs that are structurally
similar to them. The expected size of the candidate
motifs varies from 60 nt to 80 nt. Two of them are
tree motifs (C2,C7), four are bridge motifs
(C1,C3,C4,C5), and four are pseudoknots
(C6,C8,C9,C10). A comparison of the candidates
with existing motifs in Figure 1 suggests that at least
five of the predicted RNA-like topologies are
similar to those for functional RNAs. For example,
snoRNA, a molecule involved in post-transcrip-
tional modification of other RNAs, is topologically
similar to candidate motif C1 but with a missing
stem-loop element. The three-stem junction motif

Graph representation
with natural submotif

RNA secondary structure
with natural submotif

Similar existing topology
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Figure 7. Ten predicted candidate novel RNA motifs with about 60 nt to 80 nt deduced from the clustering in Figure 3,
which are RNA-like topologies in the case of Laplacian order 2.
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C2 may be viewed as a substructure of the four-
stem junction tRNA. The linear four-stem-loop
structure C3 is similar to the linear three-stem-
loop motif of DsrA RNA. We have found no
apparent structural similarity between existing
RNAs and C4, C5 and C6 topologies. The four-
vertex tree motif C7 is similar to the topology of
P5abc, a domain of group I intron ribozyme, except
for the location of a hairpin loop.

Interestingly, the complex topology of candidate
pseudoknot C9 appears to be a variation of several
existing pseudoknots, including viral frameshifting
(PKB178), HIV-15'-UTR (PKB239), and virial tRNA-
like (PKB191). The common motif of these pseudo-
knots is the core double-pesudoknot (PKB178) with
addition of one or two hairpin loops to generate
topological diversity. This theme holds also for
predicted motif C10 and HDV ribozyme (PKB75),
which has an extra stem-loop. We have identified
topological similarities between the predicted novel
motifs and existing RNAs to indicate their potential
to be functional molecules, but not necessarily
functionally related to the existing structures
compared.

Many functional RNA topologies (Figure 1) are
compact pseudoknots and moderately branched

trees (i.e. low order junctionslo), with no pseudo-
knots possessing bridge substructures. The candi-
date topologies in Figure 7 have similar features;
there is only one pseudoknot (C6) with a bridge
substructure. For comparison, the topologies in the
non-RNA-like group generally consist of pseudo-
knots with one or more single strands connecting
the substructures of a motif, as well as several
complex pseudoknots (see our RAG database).

It is also instructive to identify natural submotifs
of our candidate RNA topologies. Since the
candidate RNAs are small, we are restricted to
consideration of tiny RNA structures such as
bulged hairpin (Rfam:CopA), DsrA RNA
(Rfam:DsrA), and single strands (NNDB:PR0055,
PR0037). The folds of single strands are found as
submotifs of C1, C4 and C7. The linear stem-loop
structure of DsrA RNA is found in C3, C6 and C9.
The C2 and C5 topologies contain the bulged
hairpin fold.

Identifying sequences folding into candidate
topologies

To deduce possible sequences that will fold into
the new candidate motifs, we suggest employing a

ID Designed sequence

Novel RNA structure

Cl1 | AACACAUCAGAUUUCCUGGUGUAA
CGCCAAUGAGGUUUAUCCGAGGC

C2 | AGCGCCGUGGCAGGGCUCAUAACC
CUGAUGUCCUCGGAUCGAAACCGA
GCGGCGCUACCA

C3 | AACACUCAGAUUUCCUGGUGUAAC
GAAUUUUUUAAGUGCUUCUUGCUU
AAGCAAGUUUCUACCCGACCCCcCU
CAGGGUCGGGAUUUUGGACCUCCA
UGACGUUAUGGUCC

C4 | AACACUCAGAUUGGACCUCAUGAC
GUUAUGGUCCUUCCUGGUGUAACG
AAUUUUUUAAGUGCUUCUUGCUUA
AGCAAGUUUCUACCCGACCCCCUC
AGGGUCGGGAUUU

C5 | CCUGGUAUUGCAGUACCUCCAGGU
AGCGCCGUGGCAGGGCUCAUAACC
CUGAUGUCCUCGGAUCGAAACCG
AGCGGCGCUACCA

C6 | AGACCGUCAAACACAGACUAAAUGU
CGGUCGGGGAAGAUGUAUUCUUCU
CAUAAGAUAUAGUCGGCCUGGUAU
UGCAGUACCUCCAGGU

C7 | GGCAGUACCAAGUCGCGAAAGCGA
UGAUGGUAAGCCUUGCAAAGGGUU
AAGCUGCC

C8 | not yet found

C9 | CUUCUUAUAUGAUUAGGUUGUCAU
UUAGAAUAAGAAAACCUGGUAUUG
CAGUACCUCCAGGUUAACCUG

Figure 8. Ten RNA sequences
that fold into candidate novel RNA
motifs in Figure 7 as constructed
by a build-up procedure are

C10 | not yet found

shown.
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modular design protocol, to be followed by experi-
mental testing.'” The idea is to construct candidate
topologies using small existing RNA structures and
their associated known sequences. For example, we
can propose sequences for the C1, C3, C4, C6 and C9
motifs using the following approach. For motif C1, a
bridge structure with three stems, we combine a
tree structure with two stems (NDB:PR0055) with a
tree structure with one stem; the latter is a fragment
of a bridge structure with three stems (DsrA RNA).
We then “fold” this built-up structure using Mfold
(Figure 8). In this case, Mfold indeed produces
motif C1 as the optimal fold (dG= —11.4 kcal/mol).
For C3, a bridge structure with four hairpins, we
combine two existing structures, a bridge with three
hairpins (DsrA RNA) and a hairpin structure (NDB:
PTRO016). For C4, we insert a fragment of a hairpin
structure (PTR016) into a bridge structure with
three hairpins (DsrA RNA). For Cé-pseudoknot
structure with a bridge, we add a tiny hairpin
structure (PTR 016) to the end of an existing
pseudoknot RNA, PKB77. For the pseudoknot
structure C9, we insert a hairpin structure (PTR
016) into the middle of a pseudoknot (PKB216).
These sequences fold into their candidate topol-
ogies using the PKNOTS program available from
the Eddy groupf. In Figure 8, we provide the results
of sequences and structures using the sir_graph and
Mfold programs from the Zuker group.

We can also consider cutting out or moving a
fragment from an existing RNA structure into
another. For example, we identified candidate
sequences for C2 and C7 using this backward
approach. For C2, we used tRNA structure and cut
out a stem-loop. For C7, we moved a stem-loop
from the P5abc domain of group 1 intron of
Tetrahymena thermophila. These preliminary experi-
ments already suggest several sequences that can be

T http:/ /www.genetics.wustl.edu/eddy

40 50 RNA dual graphs using Laplacian
order 2.

examined in the laboratory and indicate that the
above ideas are worth exploiting systematically.

Prediction of the relative abundance of
pseudoknot, tree and other motifs

Our analysis and prediction of small (60-80 nt)
RNA motifs can be extended to larger topologies
where fewer or no existing RNAs are available. We
overcome the paucity of larger existing RNAs by
using the medoids determined from the clustering
of smaller three and four-vertex topologies. We
assume that their medoids for both RNA-like and
non-RNA-like groups can be used to similarly
cluster five, six, and higher-vertex RNA graphs
into two groups. More precisely, we use fixed
medoids for clustering all higher-vertex graphs.
This procedure is expected to yield less accurate
results with increasing vertex number. Figure 9
shows the PAM clustering of 108 five-vertex
topologies where six out of eight functional topol-
ogies are clustered in the RNA-like group. Table 1
tabulates the number of topologies in the RNA-like
group as a function of vertex number.

Figure 10(a) shows the proportion of pseudoknot
motifs in the RNA universe as a function of vertex
number, or size (~20 nt/vertex). The percentage of
pseudoknots from our clustering analysis rises
rapidly from 30% for three-vertex graphs to >90%
for seven- and higher-vertex graphs (i.e. >140 nt).
Note that pseudoknot topologies are determined
using the edge-cut or Eulerian tour property. The
trend for the existing RNAs up to five-vertex motifs
is similar to our predicted pseudoknot abundance
curve, with deviations of ~10%. Quantitative
agreement with data is not expected because RNA
structures in databases are most likely not repre-
sentative of the RNA structure universe. Another
problem is that very few RNA structures are
known, unlike protein structures. The pseudoknot
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Figure 10. Size dependence (vertex number) of the relative proportion of pseudoknot (a), bridge (b), and tree (c) motifs
in the RNA universe, and their distributions in all possible graphs (d), RNA-like (e) and non-RNA-like (f) groups.

abundance with clustering analysis is consistently
lower by 10% than without (hypothetical) cluster-
ing analysis, except for seven and higher-vertex
numbers where the results converge. The
abundance of non-pseudoknots is computed by
subtracting 100% from pseudoknot abundance.

The proportion of tree motifs decreases with
RNA size (Figure 10(b)), from a high of 33% for
two-vertex case to <10% for five and higher-vertex
motifs. The same trend is observed with or without
clustering analysis. The proportion of existing RNA
trees also decreases with size, but the data do not
quantitatively agree with prediction for four and
five-vertex cases. A similar trend is seen for bridge
motifs (Figure 10(c)) in agreement with data.

We also analyze the abundance trends of pseudo-
knots, trees and bridges in entire RNA, RNA-like
and existing RNA groups (Figure 10(d)—(f)). The
trends are the same in all groups considered:
pseudoknot abundance increases with size whereas
non-pseudoknot abundance (trees and bridges)
decreases with size. For all sizes, our calculations
show that tree topologies are less abundant than
bridge motifs, which in turn is less abundant than
pseudoknots. We thus conclude that the RNA
universe is dominated by pseudoknots, especially
for larger RNAs. It is somewhat surprising that the
tree motif type is the least abundant considering the
importance of RNA tree structures, such as tRNA
and 55 and 23 S ribosomal RNAs, in the develop-
ment of the field.

Discussion

Advantages and disadvantages of the sequence
and topological approaches for exploring RNA
structure space

Conventional approaches to RNA genomics and
the search for functional RNAs have focused on
identifying sequences that fold to novel structures
or corresponding to desired functions. For example,
the analysis of genomes for novel non-coding RNAs
relies on sequence conservation and specific
sequence motifs.”*****> A number of candidate and
novel RNAs have been identified in this way.
Another active area is the identification synthetic
functional RNAs from random sequence pools
using in vitro selection techniques,‘B*46 which
essentially explore the sequence space. Recent
attempts to design novel RNAs by fitting sequences
to structures highlight the complexity of the
sequence space.'”*” Sequence-based approaches
are principally limited by the astronomical size of
the sequence space and by the lack of sequence
conservation among many functionally and struc-
turally related RNA molecules (e.g. tRNA).

In contrast to sequence-based approaches, our
topological approach has the advantage that the
RNA structure space can be comprehensively and
efficiently explored. Of course, the skeletal graphi-
cal structures are starting points and lack
information about sequence details. Still, our
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combination of topology construction, clustering
and characterization enables prediction of specific
candidate RNA topologies (Figure 7) and the
estimation of the abundance of various RNA types
as a function of size in the RNA universe (Figure 10).
To the best of our knowledge, this is the first attempt
to assess the size of RNA structure space based on
information of existing and hypothetical RNA
motifs. Our topological approach focuses on global
features of the RNA space, such as RNA motif
connectivity and their properties, whereas conven-
tional sequence-based approaches search for
specific motifs (e.g. GNRA tetraloops) in functional
RNAs. Thus, topological and sequence approaches
are complementary. Combining their respective
advantages in future analysis of genomes and
design of functional RNAs is likely to lead to a
more productive search from novel RNAs.

Topological descriptors and functional RNAs

Our clustering of existing and hypothetical RNA
topologies into RNA-like and non-RNA groups is
based solely on topological descriptors such as
the scaled slope (V*B;) and intercept (a;) of the
Laplacian eigenvalue spectrum. Despite the
absence of information about specific sequence
motifs in our procedures, we find that most existing
RNAs are clustered in the same group. Our analysis
of the significance profiles of existing, candidate
and hypothetical RNAs confirms that our topologi-
cal descriptors can successfully discriminate RNA-
like from non-RNA topologies. Furthermore, there
are intriguing similarities between candidate and
functional RNA topologies. Thus, our clustering
results and analyses suggest that significant
features of functional RNA structures are encoded
in their topologies. For example, our previous
survey showed that functional RNA tree topologies
are moderately branched.'’ Clearly, our level of
description does not include detailed features of
functional motifs like UNCG and GNRA tetraloop
motifs, bulge-G, bulge-helix-bulge, U-turn, biloop
and triloop, and A-stack, although their presence is
implicit in our topological descriptors. Of course,
2D RNA structures and their graphical represen-
tations do not contain information about tertiary
interactions, including interactions with metal ions
which are integral to many RNA structures.***’
Ultimately, knowledge of 3D structures is required
to understand functional properties in detail.

Relative trends of RNA motif types are dictated
by mathematical possibilities

Pseudoknots, trees and bridges are fundamental
motif types of RNA secondary structures. Although
numerous examples of each motif type are archived
in various databases,*®* their relative distributions
have not been estimated before. Proportions are
easier to estimate than the absolute motif number
because not many existing RNAs are available for
accurate prediction. This analysis was made

possible by our topology characterization algor-
ithm, allowing automated distinction of motif types
regardless of motif complexity. Our main prediction
is that the RNA structure universe is dominated by
pseudoknots instead of tree and bridge motif types.
This reflects the many more mathematically
possible ways to form pseudoknot than tree
topologies, although tree motifs are better known
through examples such as tRNA and 5S and 23 S
ribosomal RNAs. Of course, Nature also selects
functional topologies based on energetic and fold-
ing criteria. The qualitative agreement between
predicted and existing relative abundance of
pseudoknots strongly suggests that Nature avails
herself to numerous mathematically possible
pseudoknot structures. Future estimates of motif
abundance should consider energetic factors.

Comparing the RNA and protein structure
universes

Current predictions of the size of protein struc-
ture universe rely considerably on extra;)olation of
the statistics of existing protein folds.””*”' Geo-
metric and thermodynamic factors are known to
influence the distribution of fold classes.”® A recent
estimate suggests that the protein structure
universe has ~16,000 structures of all sizes.” In
contrast, our estimate of the RNA structure
universe is size dependent and based on topological
constraints of RNA secondary structures. We pre-
dict that the number of candidate RNA motifs
grows with RNA size. RNA size and constraints,
including motif types, can be precisely specified in
graphs, allowing exact enumeration and clustering
analysis of the RNA structure space. However, no
similar analysis is available for protein folds due to
essential differences between RNA and protein
molecules. Still, the four protein fold classes™ (i.e.
d, B, a+PB, and a/B), which are a basis of SCOP
database classification,”* may be regarded as
equivalent to RNA pseudoknot, tree and bridge
motif types. This comparison is reasonable because
o and B are protein secondary structural elements.
The distribution of RNA motif types is uneven
(Figure 10), whereas protein fold classes are
more homogeneous: the proportions of a, B, a+8,
and o/B classes are 25%, 20%, 30% and 25%,
respectively.”!

Conclusion

Existing, candidate and non-RNA topologies are
systematically catalogued in our RAG databasef.
The topologies are organized by vertex number and
by complexity as measured according to the
Laplacian spectrum. In addition to the results for
dual graphs discussed here, RAG catalogues results
for tree motifs up to ten vertices, or a maximum
RNA size of ~180nt. We hope that RAG’s

t http://monod.biomath.nyu.edu/rna/rna.html
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cataloguing of existing and hypothetical motifs will
help organize the universe of RNA motifs and
stimulate the search for novel RNAs. One possi-
bility, under development, is to systematically
identify sequences that fold into the desired,
candidate topologies by a modular build-up
procedure similar to our preliminary folding
experiments.'*°
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