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ABSTRACT

Riboswitches and RNA interference are important
emerging mechanisms found in many organisms to
control gene expression. To enhance our understand-
ing of such RNA roles, finding small regulatory motifs
in genomes presents a challenge on a wide scale.
Many simple functional RNA motifs have been
found by in vitro selection experiments, which pro-
duce synthetic target-binding aptamers as well as
catalytic RNAs, including the hammerhead ribozyme.
Motivated by the prediction of Piganeau and
Schroeder [(2003) Chem. Biol., 10, 103–104] that syn-
thetic RNAs may have natural counterparts, we
developand apply an efficient computational protocol
for identifying aptamer-like motifs in genomes. We
define motifs from the sequence and structural
information of synthetic aptamers, search for
sequences in genomes that will produce motif
matches, and then evaluate the structural stability
and statistical significance of the potential hits. Our
application to aptamers for streptomycin, chloram-
phenicol, neomycin B and ATP identifies 37 candidate
sequences (in coding and non-coding regions) that
fold to the target aptamer structures in bacterial and
archaeal genomes. Further energetic screening
reveals that several candidates exhibit energetic pro-
perties and sequence conservation patterns that are
characteristic of functional motifs. Besides providing
candidates for experimental testing, our computa-
tional protocol offers an avenue for expanding natural
RNA’s functional repertoire.

INTRODUCTION

RNA has a wonderful capacity to form complex, stable tertiary
structures due to its conformational flexibility, modularity and

versatility. This capacity enables RNA molecules to play
essential roles in cellular processes of all organisms (1–4),
mediated by ligand-binding, complementary base pairing
and catalytic reactions. Recent discoveries have highlighted
the regulatory roles of small functional RNA motifs in the
control of gene expression. For example, riboswitches regu-
late translation via binding of mRNA to metabolites (5), and
microRNAs suppress gene expression by complementary
base pairing (6). Since ligand-binding and base pairing are
fundamental aspects of RNA interactions and activities,
many such small functional RNA motifs may exist in
the cell.

With rapidly growing interest in RNA structure and func-
tion, the central objective of increasing RNA’s functional
repertoire has led to various experimental and computational
approaches. The current genome-wide searches for natural
functional RNA molecules include genetic screening [e.g.
the FANTOM Consortium and the RIKEN group (7,8) and
others (9–11)], comparative genomics (12,13), neural net-
works (14), graph theory (15,16) and other complementary
approaches (17). Unlike proteins, computational RNA genom-
ics is still in its early stages of development, requiring new
ideas and tools to advance the field.

Here, we develop and apply a method for finding small
functional RNA motifs in genomic sequences based on syn-
thetic functional motifs derived from in vitro selection experi-
ments. In vitro selection is an iterative experimental process
for uncovering small RNA molecules from a large pool of
random sequences with a specific physical or chemical prop-
erty (18,19) [reviewed in (20)]. Numerous target-binding nuc-
leic acid molecules (known as ‘aptamers’) have been identified
using this approach, with targeted molecules including organic
molecules, antibiotics, peptides, proteins and whole viruses
(20,21). In addition, in vitro selection experiments have led
to the discovery of novel RNA enzymes (ribozymes) and to
many applications in biomolecular engineering, e.g. allosteric
ribozymes and biosensors (22–27). Clearly, in vitro selection
has many important applications in biology, chemistry, medi-
cine and biotechnology (22,24–26,28–30).
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Although in vitro selection typically generates artificial,
non-biological molecules, Szostak’s group (31) recently
found that the evolution-mimicking process of in vitro selec-
tion can recreate biologically active RNA motifs known
in vivo, such as the hammerhead ribozyme. Moreover, recent
findings show that metabolite-induced RNA conformational
changes (i.e. natural RNA aptamers) control bacterial gene
expression (5). Interestingly, Piganeau and Schroeder, in
response to the Patel group’s structural characterization of
the streptomycin-binding aptamer (32), commented that
‘We can now predict that many biosynthetic pathways will
be regulated by metabolite binding ‘natural aptamers,’ and we
might even find a structure similar to the streptomycin aptamer
in a bacterium producing streptomycin’ (33). Thus, experi-
mental studies suggest that in vitro selected motifs may
exist in vivo, and these findings imply that synthetic functional
motifs may be exploited for expanding the repertoire of natural
functional RNAs. Natural RNA motifs similar to synthetic
aptamers are likely to exist because aptamers bind to certain
targets that are prevalent in Nature (e.g. streptomycin pro-
duced by bacteria, ATP, FMN).

Currently, the Aptamer Database (34) lists �300 aptamer
and artificial ribozyme sequences spanning diverse functions.
This valuable information provides a unique opportunity for
uncovering many small natural functional motifs in genomes.
Our method involves extracting critical topological and
sequence-specific features of in vitro selected motifs, search-
ing for potential genomic sequences that may exhibit similar
properties when folded and screening of candidate sequences
using thermodynamics criteria for structural stability to elim-
inate spurious matches. After applying the method to several
aptamers that bind either ATP, chloramphenicol, neomycin B
or streptomycin, we find 37 candidate sequences that fold to
the target aptamer motifs distributed among 9 bacterial and 4
archaeal genomes. Of these, several exhibit energetic proper-
ties and sequence conservation patterns that are characteristic
of functional motifs. More generally, our study suggests that
such ‘natural aptamers’ may be abundant in the genomes of
various organisms.

The advantage of this computational approach to finding
novel functional RNA motifs is that the biological activity is
known a priori. Thus, the method is not limited to the existing
repertoire of natural RNAs since the in vitro selected func-
tional motifs can be expanded as needed, allowing identifica-
tion of truly novel motifs not accessible by other techniques. In
the near future, combining our computational prediction algo-
rithm with experimental verification techniques has the poten-
tial to evolve a functional RNA motif discovery approach
complementary to existing experimental and computational
techniques.

METHODS

Overall approach

In brief, we extract the relevant structural and sequence
information from in vitro selected aptamers that accounts
for the molecule’s functionality and search for genomic
RNA sequences with the specified (sequence and structure)
motif; we then assess the candidate sequences by performing
thermodynamic stability and statistical significance tests

which involve calculating heat-capacity curves, free energies,
energy landscapes and expected motif occurrence frequency in
random sequences. Although we develop the protocol to
search for aptamers, it can be generalized to ribozyme motifs.

Our algorithm consists of four major steps:

(i) The motif descriptor is constructed manually by extracting
the critical sequence and structural features from the
in vitro selected functional RNA molecule that confer
binding affinity (usually consensus sequences and second-
ary structures). If X-ray crystallography or NMR studies of
aptamer motifs are available, detailed structural features
are incorporated in the motif descriptor. Such studies help
pinpoint important structural properties of the motif,
including the overall qualitative structure (e.g. loops,
bulges, hairpins, lengths of stems, etc.) and sequence infor-
mation specifying critical hydrogen-bonding interactions
(e.g. Figure 1 for the streptomycin–aptamer complex).

(ii) The genomes of selected organisms are searched using the
RNAMotif program (35), a motif scanning tool, for the
structure specified by the motif descriptor. The program
searches for sequences in genomes that could potentially
fold into the specified secondary structure based on base
pairing rules (Watson–Crick, wobbles and non-canonical
base pairs).

(iii) The sequence hits are then folded using the Vienna RNA
Package (36), a secondary structure prediction algorithm.
Although the algorithm is imperfect (pseudoknots and
magnesium ions are excluded), it is known to be reason-
ably accurate for the short sequences we study, <100 nt.
Genomic sequences that fold to the target motifs define our
candidate natural aptamer motifs.

(iv) The candidates are further subjected to statistical signifi-
cance and thermodynamic stability tests to assess their
quality and eliminate likely false-positives. The stability
test involves assessing the candidates’ thermodynamic
variables and energy landscapes in comparison with
those for randomly shuffled sequences; the statistical sig-
nificance test is established by calculating expected motif
occurrence frequency in random sequences with a uniform
base composition. These tests are described in detail
below.

Aptamer motif descriptors

Creating motif descriptors requires biological intuition and
experimentation. Generally, the results of many in vitro selec-
tion studies include a family of similar sequences with the
desired function. Therefore, based on sequence conservation,
it is possible to judge how much variability to allow in certain
parts of the structure. This sequence conservation has been
used by experimentalists to produce minimal (shorter), active
aptamers binding antibiotic targets (37,38). Our motif descrip-
tors are designed for these aptamers, though they do not neces-
sarily match the raw sequences from in vitro selection
experiments. The motif descriptors for antibiotic and ATP-
binding aptamers are shown in Figure 2, and their RNAMotif
descriptor files are available in Supplementary Data.

ATP-binding aptamers. All ATP-binding aptamers have a
small, highly conserved consensus sequence embedded
within a common secondary structure. The smallest secondary
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structure model for ATP aptamer was supported by deletion
analysis as well as dimethylsulfate modification experiments
(38). The structure model has a simple hairpin structure with
an asymmetric bulge containing the consensus sequence
(GGAAGAAACUG), which mediates the binding; the two
helices surrounding the bulge are variable in length (we
allow 6–14 bp). The constructed descriptor reflects exactly
this information (Figure 2a); it also matches several in vitro
selected ATP sequences in refs (39,40).

Chloramphenicol-binding aptamers. Several of the selected
chloramphenicol aptamer sequences exhibit sequence conser-
vation and the ability to fold into similar secondary structures.
The secondary structure model is supported through deletion–
selection analysis and RNase S1 sensitivity analysis (41). The
structure is composed of a hairpin with two adenine-rich asym-
metric bulges which are responsible for binding. The helix in
between the two bulges is only slightly variable in length (4–
6 bp), while the two outer helices allow higher variability.

Neomycin B-binding aptamers. The neomycin B descriptor is
a simple hairpin structure originally elucidated by footprinting
experiments (42,43). The common sequence feature is that the
hairpin loop is composed of three G-U wobble pairs followed
by a G-C pair right before the loop starts. The loop exhibits a
consensus where the first nucleotide is a guanine and the rest
of the loop is adenine-rich; the loop is closed off by a non-
canonical A-G pair. NMR experiments elucidate how the RNA

binds the neomycin B and verifies that the conserved seq-
uences are actually critical for the binding to take place (43).

Streptomycin-binding aptamers. The streptomycin-binding
aptamer was also discovered as a motif with a consensus
sequence in the bulges (32,37). The raw sequences are
�75 nt long whereas the corresponding minimally active
structure is only �40 nt in length. The minimal structure is
composed of two asymmetric bulges in a hairpin structure,
with the middle helix relatively not variable in length, and the
other two helices highly variable. The structure was initially
elucidated using a variety of techniques, including probing
though Pb2+-induced RNA cleavage, dimethylsulfate and
kethoxal. Later, the structure of the RNA–streptomycin com-
plex was solved by X-ray crystallography (32), allowing the
identification of the specific nucleotides in the aptamer that
confer binding specificity. Specifically, the experimental
sequence for the 50 asymmetric bulge is 50-G6-C7-A8-U9-
U10-U11-G12, but based on the information in Figures 1
and 2d, only the first nucleotide and the last 2 nt (G and
UG respectively) are involved in the hydrogen-bonding net-
work. Therefore, it is possible to search for the sequence motif
GNANNUG in the asymmetric bulge.

Melting curve analysis of candidate sequences

Biological molecules generally possess stable structures at
physiological temperatures. The stability of RNA secondary
structures with respect to temperature change can be analyzed

Figure 1. The hydrogen-bonding scheme of the streptomycin-binding aptamer from crystal structure [adapted from (32)]. The dotted lines represent hydrogen bonds
between the streptomycin molecule (center) and the nucleotides in the binding pocket. Information about binding specificity is critical for creating accurate aptamer
motif descriptors.
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using heat-capacity curves (‘melting’ curves). These curves
represent the amount of energy absorbed per unit change in
temperature at any given temperature (i.e. dH/dT versus T,
where H is the RNA’s conformational enthalpy). For each

candidate sequence, we compute the melting curve using
tools available in the Vienna RNA Package (36). Additionally,
to discriminate random from probable functional RNA
sequences, we randomly shuffle each candidate sequence

Figure 2. The four experimental aptamers (left side of each set), constructed motif descriptors (middle) and candidate natural aptamers (right). Regions with many
N’s are variable in length. The nucleic acid base symbols are defined as follows: N ¼ any base; V ¼ A, C, or G; S ¼ C or G. We search the genomes for any sequence
that fits the descriptor consensus (allowing for slight mismatches). The experimental papers associated with the aptamers are (a) ATP (38), (b) chloramphenicol (41),
(c) neomycin B (42,43) and (d) streptomycin (37).
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1000 times and compute the corresponding melting curves.
The melting temperature, Tm, is defined as the temperature at
the highest peak; it may also be interpreted as the transition
temperature at which the RNA molecule’s secondary structure
experiences significant disruption. For each sequence (the can-
didate and the randomly shuffled ones), we plot the melting
temperature (Tm) against the free energy (DGo

37) as a further
indicator of stability. We then use principal component ana-
lysis to compute a 90% confidence ellipse to determine
whether the original sequence is significantly more stable
than its randomly shuffled sequences.

Conformational energy landscapes for
candidate sequences

Functional RNA molecules likely have a steeper conforma-
tional energy landscape compared with random sequences
since they are expected to favor a native, intrinsic fold and
must attain the native fold relatively fast (44). Thus, exam-
ination of the shape of the energy landscape offers an
alternative approach for discriminating RNA-like from non-
RNA-like molecules. The energy landscape is defined as a plot
of RNA’s internal energy (E) versus the base pair dissimilarity
‘distance’ (D) between the minimum energy structure and
each suboptimal structure. More precisely, for a numbered
sequence, D is defined as the number of dissimilarly numbered
base pairs between two secondary structures (36). In practice,
the suboptimal structures are calculated up to a given energy
level (e.g. 5 kcal/mol above the minimum).

To characterize and quantify the conformational energy
landscapes, we compute the ‘Valley index,’ described in
(45), which provides a measure of the overall shape of the
landscape (i.e. steepness and number of minima). The Valley
index, V, is computed by forming the Boltzmann-weighted
average of distances between all pairs of structures (minimum
energy and suboptimal):

V ¼
P

i‚ j wðiÞ ·Dij ·wðjÞP
i‚ j wðiÞ ·wðjÞ

with

wðiÞ ¼ exp
Emin�Ei

kBT

� �

where Dij is the base dissimilarity distance between structure i
and structure j, and Ei is the energy of structure i. Similar to
the procedure for the melting curves, we randomly shuffle
the candidate sequence 1000 times and plot the Valley
index V versus the ensemble free energy DGo

37and assess
the relative stability of the target sequence using a 90% con-
fidence ellipse.

Since the Valley index is a Boltzmann-weighted average of
the distances between two structures, competing low-energy
structures that are ‘far’ from each other (i.e. have highly dis-
tinct structures) will contribute significantly to the Valley
index, giving it a large value. Functional RNA molecules
are likely to have smaller Valley index values compared
with random sequences since they are expected to favor a
native, intrinsic fold.

Statistical analysis

The theoretical frequency of observing a given motif in a
random sequence of nucleotides can be estimated (46), allow-
ing assessment of the statistical over or under-representation
of the motif in the genome of a specific organism. Since the
motif descriptors of aptamers allow for variability of length
and sequence, analytic computation based on the motif’s
information content is complex (46–48). Thus applying a
Monte Carlo method to calculate the frequency is appropriate.

We consider a 1 Mb random sequence of nucleotides (25%
A, U, C, G) as a random vector X and define f(X) as the
number of times the given motif is found in X; we then estim-
ate the expected value E[f(X)] using a sample-mean method
that, for each iteration, generates a 1 Mb uniformly distributed
sequence of nucleotides [using the Mersenne Twister algo-
rithm (49)] and counts the number of times that the given
motif is observed in the sequence (using RNAMotif). We
average this number over one million iterations and estimate
the standard error to define the number of hits a specific target
motif can be expected to be found in a genome. The deviation
from this estimate allows us to assess the significance of our
actual findings.

Selected bacterial and archaeal genomes

We choose 10 bacterial and 16 archaeal species (>100 com-
plete genomes are available). Since the Streptomyces species
produce many known antibiotics (including those used here),
we use the two available Streptomyces genomes. Additionally,
we choose Escherichia coli genomes since they are among the
best characterized bacterial species. Other bacterial genomes
were selected randomly. For the searches involving the ATP
aptamer, we use 16 of the available archaeal genomes at the
National Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov).

Computational performance

The computational speed depends on both the genome size and
the complexity of the descriptor. The searches using the
RNAMotif program are very fast for bacterial-sized genomes
(�10 Mb): for the streptomycin-binding aptamer in Figure 2d,
<1 min is required for the largest genome searched (Strepto-
myces avermitilis, �9 Mb). Subsequently, the sequence hits
are ‘folded’ using the RNAfold program. For a sequence <100
nt, the predicted secondary structure is computed in several
seconds.

The screening analyses (step iv) are more computationally
intensive. Generating suboptimal structures for energy land-
scape assessment is relative efficient, taking only a few min-
utes for 200 000 structures. However, calculating heat-
capacity curves can take several minutes. Since we generate
1000 curves for each sequence, the process can take up to
several CPU hours. The computation of the theoretical expec-
ted frequency of each motif is most intensive since we perform
on the order of one million iterations of the sample-mean
method. The combined calculations (genome scanning, sub-
optimal structures and expected frequency) require several
weeks of computation. All computations were performed on
a SGI 300 MHz MIPS R12000 IP27 processor with 4 GB of
memory.
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RESULTS AND DISCUSSION

We search for three aptamer motifs for the antibiotics chlor-
amphenicol (41), streptomycin (32,37) and neomycin B
(42,43) in bacterial genomes, as well as for an ATP-binding
aptamer (38) in archaeal genomes. The four motif descriptors
are shown in Figure 2 (middle structure). Tables 1 and 2 sum-
marize our initial search results from the RNAMotif program
for sequence hits in bacterial and archaeal genomes matching
the four aptamer target descriptors (without filtering by
sequence folding and energetic analyses). There is a total of
46 (3 · 10 + 1 · 16) aptamer motif/genome pairs. To deter-
mine statistical significance, Tables 1 and 2 also report the
expected number of motif matches for each genome computed
from searches in random sequences (‘Exp.’); thus, when the
number of hits (under ‘Obs.’) is greater than the number of

expected hits (under ‘Exp.’), a potential significant finding
may arise.

The filtering step, folding each sequence and discarding
those that fold into structures that are not similar to the target
experimental motif structure, reduces the number of sequence
hits from 211 to 37, which define our candidate sequences
(Table 3); for the streptomycin aptamer, only one candidate
sequence remains. Table 3 also reports results from thermo-
dynamic tests of candidates.

Statistical analysis reveals over or under-representation
of aptamer motifs in genomes

Knowing the over or under-representation of motifs in a
given genome helps determine the biological significance of
sequence hits. Figure 3 plots the expected versus observed
matches for all 46 motif/genome pairs in our study. The expec-
ted number of matches for a genome is calculated from the
average number of matches per million base pairs for a
sequence of random nucleotides (Table 4). As shown in
Tables 1 and 2 and Figure 3, the observed number of matches
deviates from the expected number of matches for many
motif/genome pairs. Significantly, most of the aptamer
motif/genome pairs are over-represented, meaning that their
occurrence frequencies in genomes cannot be accounted
for by chance. For instance, as highlighted in Figure 3, the
expected numbers of matches are considerably lower than
the observed numbers of matches to the chloramphenicol
(7 versus 1.8 expected matches) and neomycin B (�16 versus
11 expected matches) aptamer motifs in E.coli genomes. In
contrast, neomycin B and chloramphenicol aptamer motifs are
under-represented in Streptomyces.

Specifically, the average number of matches to the neomycin
B aptamer motif in Streptomyces genomes is 4, while the aver-
age number in E.coli is four times greater. Since the average
Streptomyces genome size is almost twice that of the average
E.coli genome (�9 versus �5 Mb), these trends are significant
because probability alone would predict the number of matches
in Streptomyces genomes to be about twice as many matches
as E.coli, not one-fourth as obtained. This might indicate a
biological preference/discrimination for/against this aptamer,
i.e. either Streptomyces is significantly missing this structure,
or E.coli has a significantly large occurrence of it.

Table 1. The number of matches to the antibiotic-binding aptamer descriptors in bacterial genomes (‘Obs.’) and the expected number of matches calculated using

random sequences with uniformly distributed nucleotides (‘Exp.’)

Genome (NCBI accession number) Size (Mb) Chloramphenicol Streptomycin Neomycin B Total Obs.
Obs. Exp. Obs. Exp. Obs. Exp.

Streptomyces avermitilis (NC_003155) 9.2 0 3.1 2 0.7 6 19.8 8
Streptomyces coelicolor (NC_003888) 8.8 0 2.9 1 0.7 1 18.9 2
Escherichia coli K12 (U00096) 4.7 7 1.6 1 0.4 11 10.1 19
Escherichia coli O157:H7 (BA000007) 5.6 7 1.9 1 0.4 17 12.0 25
Escherichia coli O157:H7 EDL933 (AE005174) 5.6 7 1.9 1 0.4 19 12.0 27
Escherichia coli CFT073 (AE014075) 5.3 7 1.8 0 0.4 17 11.4 24
Neisseria meningitidis MC58 (AE002098) 2.3 1 0.8 0 0.2 9 4.9 10
Neisseria meningitidis Z2491 (AL157959) 2.2 5 0.7 0 0.2 9 4.7 14
Sinorhizobium meliloti (AL591688) 3.7 1 1.2 1 0.3 3 7.9 5
Chlamydia trachomatis (NC_000117) 1.1 4 0.4 0 0.1 1 2.4 5
Total 39 7 93 139

The motif matches are generated by the RNAMotif program without any filtering.

Table 2. The number of matches to the antibiotic-binding aptamer descriptors

in archaeal genomes (‘Obs.’) along with the expected number of matches

calculated using random sequences with uniformly distributed nucleotides

(‘Exp.’)

Genome (NCBI accession number) Size (Mb) ATP
Obs. Exp.

Aeropyrum pernix (NC_000854) 1.7 6 1.6
Archaeoglobus fulgidis DSM 4304 (NC_000917) 2.2 6 2.1
Halobacterium sp. NRC-1 (NC_002607,

NC_002608, NC_001869)
2.6 4 2.5

Methanobacterium thermoautotrophicum str.
(NC_000916)

1.8 6 1.7

Methanococcus jannaschii (NC_000909,
NC_001732, NC_01733)

1.7 4 1.6

Methanopyrus kandleri AV19 (NC_003551) 1.7 3 1.6
Methanosarcina acetivorans C2A (NC_003552) 5.8 12 5.5
Methanosarcina mazei Goe1 (NC_003901) 4.1 5 3.9
Pyrobaculum aerophilum (NC_003364) 2.3 2 2.2
Pyrococcus abyssi (NC_000868) 1.8 3 1.7
Pyrococcus furiosus DSM 3638 (NC_003413) 1.9 8 1.8
Pyrococcus horikoshii (NC_000961) 1.8 3 1.7
Sulfolobus solfataricus (NC_002754) 3.0 2 2.8
Sulfolobus tokodaii (NC_003106) 2.7 4 2.5
Thermoplasma acidophilum (NC_002578) 1.6 2 1.5
Thermoplasma volcanium (NC_002689) 1.6 2 1.5
Total 72

No additional filtering is applied to the motif matches found by the RNAMotif
program.
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In general, the number of matches for the ATP motif in
archaeal genomes shows that most genomes do not exhibit
a significant number of matches over or under the
expected number (Table 2). However, Aeropyrum pernix,
Archaeoglobus fulgidis DSM 4304, Methanobacterium
thermoautotrophicum, Methanosarcina acetivorans C2A and
Pyrococcus furiosus DSM 3638 all produce far more matches
for the ATP aptamer than the expected number, even though
their nucleotide compositions are uniformly distributed.

To estimate the expected number of sequence matches, we
used random sequences with a uniform nucleotide composi-
tion [i.e, the T(U):C:A:G should be 1:1:1:1]. Judging by the
nucleotide composition data in Table 5, most genomes are
nearly uniformly distributed. If the nucleotide composition
of a genome deviates significantly from uniform the expected
number of matches should be calculated using random
sequences with the same nucleotide composition. By using
the biased nucleotide distribution of Streptomyces (30% A/T
and 70% G/C), we do not find a significant deviation in the
expected number of matches. Calculation of expected matches
using complex random sequence models, such as higher-order
Markov chains (dinucleotide, trinucleotide, etc. distributions),
may also be considered to generate more accurate estimates

(46,47,50) but are not expected to produce significant changes
in the results.

Energetic analysis discriminates natural from
random RNA sequences

With the significantly smaller pool of filtered sequences
(following RNAfold), we now proceed to thermodynamic
evaluation of the 37 candidates in Table 3 using melting tem-
perature (Tm�DGo

37 plot) and Valley index (V�DGo
37) tests.

The Tm�DGo
37 scatter plot for a promising candidate sequence

should have favorable energetic characteristics compared with
randomized sequences. We analyze the scatter plots using
an ellipse oriented along the principal component axes that
contains 90% of the points. As a check of the Tm�DGo

37 test,
we applied it to five known biological RNAs. Table 6 shows
that all the biological sequences land outside the confidence
ellipse; similar results are obtained for a dozen RNAs.
A previous study using the free energy criterion alone did
not yield sufficient discrimination for functional RNAs (51).
The Tm�DGo

37 plots for four candidate aptamer sequences
(numbered 7/8, 17–20, 31 and 32 in Table 3) are shown in
Figure 4. The candidate aptamer sequences for ATP (sequence
7/8 in Halobacterium sp.) and neomycin B (sequences 17–20,
31 and 32 in E.coli) lie outside this ellipse and away from the
bulk of random sequences; as noted before, the neomycin B
motif is over-represented in the E.coli genomes. We observe
that the candidate aptamers have favorable energetic para-
meters even though they do not have the lowest free energies
or highest melting temperatures compared with some random-
ized sequences.

Similarly, we analyze the conformational energy landscape
and assess the corresponding V�DGo

37 plot for each candidate
sequence. Figure 5 shows the energy landscape plot for

Figure 3. Expected number of matches versus the observed number of matches
for 46 aptamer motif/genome pairs; the expected number is calculated using
random sequences. Deviations from the diagonal line represent genomes with
either an over or under-representation of the given motif.

Table 4. The expected frequency of each aptamer descriptor per 1 and 10

million base pairs of random sequence with uniformly distributed nucleotides

Descriptor Frequency ± 1 standard error
1 Mb 10 Mb

Chloramphenicol 0.3320 ± 0.0007 3.320 ± 0.007
Streptomycin 0.0778 ± 0.0003 0.778 ± 0.003
Neomycin B 2.1471 ± 0.0015 21.47 ± 0.015
ATP 0.9424 ± 0.0009 9.424 ± 0.009

Table 5. The nucleotide distribution of genomes

T(U) (%) C (%) A (%) G (%)

Streptomyces avermitilis 14.6 35.4 14.7 35.3
Streptomyces coelicolor 14.0 36.0 13.9 36.1
Escherichia coli K12 24.6 25.4 24.6 25.4
Escherichia coli O157:H7 24.7 25.2 24.8 25.3
Escherichia coli O157:H7 EDL933 24.7 25.2 24.8 25.2
Escherichia coli CFT073 24.7 25.3 24.8 25.2
Neisseria meningitidis MC58 24.3 25.6 24.2 26.0
Neisseria meningitidis Z2491 24.2 25.9 24.0 25.9
Sinorhizobium meliloti 18.6 31.5 18.6 31.2
Chlamydia trachomatis 29.3 20.6 29.4 20.7
Aeropyrum pernix 22.1 28.4 21.6 28.0
Archaeoglobus fulgidis DSM 4304 25.6 24.2 25.8 24.4
Halobacterium sp. NRC-1 17.1 33.0 17.0 33.0
Methanobacterium

thermoautotrophicum str. DH
25.4 24.7 25.1 24.8

Methanococcus jannaschii 34.3 15.5 34.4 15.7
Methanopyrus kandleri AV19 19.4 30.7 19.5 30.4
Methanosarcina acetivorans C2A 28.8 21.4 28.5 21.3
Methanosarcina mazei Goe1 29.2 20.7 29.3 20.8
Pyrobaculum aerophilum 24.1 25.4 24.5 25.9
Pyrococcus abyssi 27.7 22.4 27.6 22.3
Pyrococcus furiosus DSM 3638 29.6 20.4 29.6 20.4
Pyrococcus horikoshii 29.1 21.2 29.0 20.7
Sulfolobus solfataricus 32.3 17.9 31.9 17.9
Sulfolobus tokodaii 33.8 16.3 33.4 16.5
Thermoplasma acidophilum 26.8 22.9 27.2 23.1
Thermoplasma volcanium 29.9 19.9 30.2 20.0
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neomycin B candidate sequences 32 and 33/34 from E.coli
and Neisseria meningitidis, respectively. The good candidate
sequence 32 possesses a steep single-minimum landscape
conformational energy landscape with a small V value of
1.44, whereas the poor candidate 33/34 has multiple low min-
ima with V ¼ 8.29. The Valley index, a quantitative measure
of the conformational energy landscape, allows for a specific
and rigorous quantitative test and accounts for the much
higher-dimensional quality of the pair-wise distances between
all suboptimal structures.

Similar to the Tm�DGo
37 plots in Figure 4, we use 1000

randomized permutations and 90% confidence ellipse in
V�DGo

37 plots to assess biological significance of candidate
sequences. For biological sequences (5S, tRNA, U5, U6, U7),
Table 6 shows that 4/5 cases pass the Valley index test [i.e.
their sequences lie outside the 90% confidence ellipse (45)],
suggesting that the V�DGo

37 test is reasonable. Applying the
Valley index test to the 37 candidate aptamer sequences in
Table 3, we find that candidate sequences 7/8, 31 and 32 pass
the test. Thus, except for candidate 17/18/19/20, candidates
that pass the melting temperature test also pass the Valley
index test.

In Table 3, we retain all 37 correctly folded aptamer can-
didates, even though most do not pass the thermodynamic
tests, because these tests are imperfect, especially for small
RNA motifs. More importantly, most false-positive sequences
are already eliminated by the folding step; for example, we
observe that for tRNA >95% of the false-positive tRNA
sequences matching the tRNA motif are eliminated by the
folding step.

The thermodynamic tests measure the specificity of the
search algorithm. Also important is the algorithm’s sensitivity,
i.e. the success in detecting a known RNA class. We assess this
sensitivity of our algorithm for E.coli K12 tRNAs by using the
tRNA motif descriptor in the RNAMotif package. The tRNA
descriptor identifies 74 out of 86 known E.coli K12 tRNAs,
yielding a high success rate of 86%. Of the 74 tRNA sequences
detected, only 33% (25 sequences) fold correctly to the tRNA
shape by the RNAfold algorithm. Of the remaining 25, 17 pass

the melting temperature test, yielding a success rate of 68%.
Thus, for tRNA the overall sensitivity of our algorithm is
�20%. Clearly, sensitivity depends on specific RNA classes,
and the weak component of our overall protocol is the RNA-
fold folding application. If we were to extrapolate from the
tRNA findings, the number of possible aptamer motifs in
genomes might be five times the number of detected aptamer
sequences.

The results of both the melting temperature and Valley
index tests are summarized in Table 3 for all 37 candidate
sequences that are predicted to fold into target structures. Of
these 37 matches, there are 21 distinct sequences (since many
of the sequences occur in multiple organisms in multiple loca-
tions). The table shows that four of the sequences pass the
Tm�DGo

37 test (sequences 7/8, 17–20, 31 and 32), while only
three of the sequences pass the V�DGo

37 test (sequences 7/8, 31
and 32). Taken together, we produce the promising candidates
for experimental verification, i.e. binding of candidate motifs
to antibiotics, as: 7/8, 17/18/19/20, 31 and 32. It is also pos-
sible that few sequences pass the tests because they are so
short. Even some biological sequences may fail the energetic
tests because functional properties might not be revealed by
such tests; for example, many snoRNAs, which interact
extensively with ribosomal RNAs via base pairing, do not
pass such tests. Biological sequences are generally longer
(more than 70 nt). This means that the predictive algorithms
can characterize their properties better than short sequences,
such as the ones in Table 3. Furthermore, in all tested cases, the
Valley index test is more stringent than the melting temper-
ature test.

The above 2D correlation analyses involving free energy,
melting temperature and Valley index can be generalized to
three or higher dimensions. For ellipsoidal confidence ana-
lysis, it can be shown that the confidence level increases
as the dimensionality decreases. Thus, for a fixed confidence
level, screening in higher dimensions is more stringent than
that for lower dimensions. Currently, 1D thermodynamic
screening criteria use either free energy or Valley index. We
have used 2D analyses to improve on these screening criteria.

Table 6. The physical properties and stability test results for five biological RNA sequences

Sequences RNA NCBI
accession

DGo
37

(kcal/mol)
Tm (�C) Tm�DGo

37

test
V V�DGo

37

test

B1 50-GGAUACGGCC AUACUGCGCA GAAAGCACCG

CUUCCCAUCC GAACAGCGAA GUUAAGCUGC

GCCAGGCGGU GUUAGUACUG GGGUGGGCGA

CCACCCGGGA AUCCACCGUG CCGUAUCCU

5S RNA M34003 �61.78 93.6 + 4.13 +

B2 50-GGUCCUAUGG UCUAGUGGUC AGGACAUUGG

ACUCUGAAUC CAGUAACCCG AGUUCAAAUC

UCGGUAGGAC CU

Gln tRNA �29.65 87.4 + 2.65 +

B3 50-AGCACCGCCU GCUACUUACA UCGCAUUUAU

CUUUCGCCUU UUACUAAAGA UAGCCGUGAG

UGAGCAGGCA CUGCGGUGCA UUGACCCAAU

UUUUGGAGCC CCCUCAAAAG GGCA

U5 RNA AF095839 �42.96 86.8 + 7.25 +

B4 50-UGCAGUUUGC UGCGCUAUUA GUUUGGAACA

ACACUGAGAA GAUUAGCAUG GCCCCUGCGC

AAGGACGGCA UCUUUCUUUG AGAGGUGUGC

UGGGCUCGCC CAGCUUUU

U6 RNA AF053588 �38.43 67.4 + 18.06 �

B5 50-GACGUGUUAC AGCUCUUUUA GAAUUUGUCU

AGUAGGCUUU CUGGCUUUUC ACCGGAAAGC CCCU

U7 RNA M17910 �19.45 93.4 + 8.85 +

DGo
37, Tm and V denote the free energy, melting temperature and Valley index, respectively. The Tm�DGo

37 and V�DGo
37 test results (+ or�) at 90% confidence level

are calculated using the thermodynamic scatter plots (see text and Figure 4).
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Figure 4. Free energy DGo
37 versus melting temperature Tm (left column) and free energy versus Valley index V (middle column) for four good candidate aptamers

(diamond symbol; right column) and their 1000 randomly shuffled sequences. Points in the ellipses cover 90% of sequences. Sequence numbers refer to those in
Table 3.
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In addition to the above energetic tests, we also assess the
stability of the candidate sequences within larger sequences
for those candidates occurring in known genes (see Table 3).
We fold the entire gene sequence with and without constrain-
ing the aptamer’s structure to determine the change in the
optimal free energy (DDGo

37). The optimal energy of the
constrained structure is always higher than that for its uncon-
strained structure. A significant limitation of this assessment is
that RNA fold predictions are not accurate for long sequences
(the gene sequences are �1000 nt). Still, we find that for
candidate sequences 1, 2, 3, 25 and 26, the DDGo

37 values
are between �1 and 0 kcal/mol, indicating that these aptamer
structures are likely stable within the larger sequence context.
For candidate sequences 32 and 37, DDGo

37 is �4 kcal/mol
compared with aptamer energies of about �10 kcal/mol; for
other candidate aptamers (9–12,17–24) within genes, the
DDGo

37 values are comparable to their aptamer energies.
Yet another test of the candidate natural aptamers’ stability

is to fold them within a slightly larger sequence context. We
perform this test for all the four good candidates (sequences
7/8, 17–20, 31 and 32). Specifically, we extend these candidate
sequences by 10 nt at the 30 and 50 ends and refold them.
Encouragingly, the key motif elements (A-rich bulge of
ATP aptamer and stem–loop motif of Neomycin B aptamer)
of all the shorter (original) sequences responsible for binding
are maintained, indicating their stability within the larger
sequence context.

Sequence conservation and four promising
candidate natural aptamer sequences

The physical and statistical analyses above helped us evaluate
the candidate sequences that are most likely to have the
properties of biological molecules. Based on such analyses,
the promising natural aptamer sequences are 7/8 (42 nt),
17/18/19/20 (29 nt), 31 (23 nt) and 32 (19 nt). Further
support for these candidates is provided by their sequence

conservation. Candidate aptamers 7 and 8 are identical 42 nt
non-coding sequences found in plasmids pNRC200 and
pNRC100, respectively, of Halobacterium sp. Most interest-
ingly, the 39 nt sequences 17–20 are identical copies found in
hypothetical genes (yciQ, ECs1849, Z2542) of four different
E.coli species. It is unlikely that candidate sequences 7/8 and
17/18/19/20 occur by chance. Table 3 shows that several other
mostly shorter sequences (2–3, 13–15, 21–24, 25–27, 28–30,
33–34, 35–36) also exist in multiple copies. However, candid-
ate sequences 31 and 32 exist as unique sequences in E.coli
genomes; sequence 31 occurs in the non-coding region and
sequence 32 in gene Smf.

Thus, sequences 7/8 (ATP) and 17/18/19/20 (neomycin B)
are promising candidates for natural aptamers based on ener-
getic and statistical tests, and sequence conservation;
sequences 31 (neomycin B) and 32 (neomycin B) are judged
to be good candidates based on energetic and statistical tests.
These final sequences 7/8, 17/18/19/20, 31 and 32 (Table 3)
comprise our best candidates for experimental testing. The
functions of these candidate aptamers could be verified by
performing ligand-binding experiments in vitro, and their
existence in vivo could be determined using standard gene
expression assays.

SUMMARY AND CONCLUSION

Our method for searching for artificial aptamer motifs in the
genomes of various organisms includes a series of statistical,
thermodynamic and biological (sequence conservation) tests
to screen and produce the most promising candidates. In our
application to ATP, chloramphenicol, neomycin B and strep-
tomycin aptamers, we have found several promising natural
aptamer motifs (sequences 7/8, 17/18/19/20, 31 and 32 in
Table 3). These candidates, possessing characteristics of func-
tional RNA molecules (stable folds and sequence conserva-
tion), are found in coding and non-coding regions of bacterial
and archaeal genomes. Collaborations are underway to test
these candidates in the laboratory.

Many algorithmic improvements can be envisioned so that
our tool will provide a general resource to screen and discover
aptamer motifs in genomes. Automating the analyses so that
the algorithm can be applied to all genomes comprehensively
as well as to the numerous aptamers catalogued in the Aptamer
Database (34) is highly desirable. Better ways to eliminate
false-positives from our search results are also needed.
With experimental feedback, further computational and bio-
logical improvements can be made. The resulting computa-
tional tool in conjunction with in vitro technology has the
potential to help the effort of expanding known RNA reper-
toire by identifying novel RNA genes or RNA-based regulat-
ory mechanisms.
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Supplementary Data are available at NAR Online.
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