
 10.1261/rna.374907Access the most recent version at doi:
 2007 13: 478-492; originally published online Feb 23, 2007; RNA

  
Namhee Kim, Hin Hark Gan and Tamar Schlick 
  

 in vitro selection of RNAs
A computational proposal for designing structured RNA pools for
 
 

 References

  
 http://www.rnajournal.org/cgi/content/full/13/4/478#References

This article cites 43 articles, 23 of which can be accessed free at: 

 service
Email alerting

 click heretop right corner of the article or 
Receive free email alerts when new articles cite this article - sign up in the box at the

 Notes   

 http://www.rnajournal.org/subscriptions/
 go to: RNATo subscribe to 

© 2007 RNA Society 

 on May 18, 2007 www.rnajournal.orgDownloaded from 

http://www.rnajournal.org/cgi/doi/10.1261/rna.374907
http://www.rnajournal.org/cgi/content/full/13/4/478#References
http://www.rnajournal.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=rna;13/4/478&return_type=article&return_url=http%3A%2F%2Fwww.rnajournal.org%2Fcgi%2Freprint%2F13%2F4%2F478.pdf
http://www.rnajournal.org/subscriptions/
http://www.rnajournal.org


BIOINFORMATICS

A computational proposal for designing structured RNA

pools for in vitro selection of RNAs

NAMHEE KIM,1 HIN HARK GAN,1 and TAMAR SCHLICK1,2

1Department of Chemistry, New York University, New York, New York 10003, USA
2Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

ABSTRACT

Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding
complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent
with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures
could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that
links RNA sequence space regions with corresponding structural distributions via a ‘‘mixing matrix’’ approach combined with a
graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs
define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine
the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that,
in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including
a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can
benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed
pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of
RNAs and related problems.

Keywords: in vitro selection; RNA pool design; mixing matrix; sequence-structure map; graph theory

INTRODUCTION

In vitro selection is an experimental approach that allows
the screening of large random-sequence libraries of nucleic
acid molecules (1015) for a specific function, such as
binding or catalysis (Ellington and Szostak 1990; Tuerk
and Gold 1990; Wilson and Szostak 1999; Jäschke 2001;
Storz 2002). In recent years, numerous target-binding
nucleic acid molecules (aptamers) have been identified;
targets include organic molecules, antibiotics, proteins, and
whole viruses (Wilson and Szostak 1999; Hermann and
Patel 2000). In addition, in vitro selection experiments have
led to novel RNA enzymes (ribozymes) and have ramifica-
tions for biomolecular engineering, for example, the design
of allosteric ribozymes and biosensors (Soukup and Breaker
1999a,b, 2000) and aptamers for functional genomics
(Famulok and Verma 2002). Other emerging applications

of engineered RNAs include RNA synthetic biology, where
designed RNAs are used to control cellular functions (e.g.,
regulate gene expression) (Isaacs et al. 2006). These exciting
advances offer new investigative and application tools for
molecular biology, proteomics, molecular medicine, and
diagnostics (Breaker 2004). As applications of in vitro
selection technology expand, the demands for efficient
selection of complex RNA motifs increase in importance.

Many RNAs identified from random pools have simple
structural motifs (e.g., stem–loop, stem–bulge–stem–loop)
(Lee et al. 2004). Indeed, our graph-based analysis of
random pools (25–100 nucleotides [nt]) showed that dif-
ferent RNA secondary topologies are far from uniformly
distributed, with low yields for multiply branched struc-
tures, although complex structures gradually become more
frequent as RNA length increases (Gevertz et al. 2005).
Interestingly, recent experimental findings suggest that
enhancing the structural diversity of RNA pools increases
the possibility of obtaining novel RNAs with high activity
(Carothers et al. 2004, 2006). Specifically, GTP aptamers
with high-binding affinities are found to be more com-
plex structurally than low-binding-affinity aptamers. The
principal reason for the lack of structural diversity in
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random pools is due to incomplete and inefficient sampling
of the astronomical size of the sequence space; random
sequence sampling is inefficient because structures are not
uniformly distributed in sequence space (Gevertz et al.
2005). To overcome this problem, heuristic approaches
have been used to enhance the structural diversity of RNA
pools. For example, structured pools have been synthesized
by maintaining a constant stem–loop (GTP aptamer
selection) (Davis and Szostak 2002) and by introducing
random segments in existing RNA structures (e.g., purine
nucleotide synthase and domains of group I ribozymes)
(Jaeger et al. 1999; Ohuchi et al. 2002, 2004; Lau et al. 2004;
Yoshioka et al. 2004). Recent works have also investigated
the effects of sequence length (Legiewicz et al. 2006) and
nucleotide composition (Knight et al. 2005) on recovery of
specific RNAs. In addition, different functional classes of
single-stranded RNAs have been found to have similar
nucleotide compositions, implying evolutionary conver-
gence (Schultes et al. 1997). The success of heuristic
approaches depends on the details of the introduced
sequence biases and the RNA function targeted. It is thus
a challenge to develop systematic pool design approaches
based on deeper understanding of pool sequence and
structural complexity for the discovery of novel and
complex RNAs.

To enhance in vitro selection experiments, RNA pools
must possess sufficient sequence and structural complexity
to ensure that the target RNA property exists in the pool.
Given that we know little about the distribution of active
RNAs in sequence and structural space (Carothers et al.
2004), an important goal of pool design is to maximize
sequence and structural diversity without synthesizing all
possible sequences. Even if complete coverage of sequence
space is possible, not all regions of the space are likely to be
productive for finding novel RNAs. This was suggested by
recent analysis showing that the properties of GTP
aptamers are correlated with their sequence/structural
information content (Carothers et al. 2004). Unlike
sequence space, the complexity of RNA structure space is
more difficult to characterize quantitatively. At the sec-
ondary structural level, structural distributions of RNA
pools can be analyzed using graph theory (Gan et al. 2003;
Kim et al. 2004). Such an analysis shows that random pools
are not structurally diverse (Gevertz et al. 2005), suggesting
that pool structural diversity depends on how the sequence
space is sampled. Indeed, understanding the relationship
between sequence and secondary/tertiary structure spaces is
essential for the design of effective pools for in vitro
selection of RNAs. Thus, developing methodologies for
generating and analyzing sequence pools possessing diverse
RNA sequences and structures could enhance in vitro
selection technology. Ultimately, a deeper understanding
of the distribution of active RNAs in sequence and
structural space will emerge through productive interac-
tions between theoretical analysis and experiment.

Here we develop a computational approach for improv-
ing pool sequence and structural diversity by sampling
sequences representing diverse regions of sequence space.
We show that effective sampling of sequence space regions
can be performed using nucleotide base ‘‘mixing matri-
ces’’ for nucleotide transition rates applied to chosen
starting sequences. Mixing matrices applied to given
sequences are essentially generators of sequence pools
and can be used to guide the reactants during in vitro
selection experiments. Since we show that different
regions of the sequence space are associated with distinct
structural distributions, designed pools with specified
target secondary structures can be obtained by optimizing
a set of mixing matrices and starting sequences to
approximate the target structural distributions. Figure 1
illustrates the relations among pool sequence/structure
analysis, mixing matrix and starting sequence, and pool
synthesis.

Specifically, we define five classes of mixing matrices
motivated by biological objectives, such as on covariance
and random mutations, to cover diverse regions of RNA
sequence space. We show that such mixing matrices can
produce structural distributions that are distinct from
those of random sequence pools. We further describe
optimal combinations of mixing matrices for specific target
structured pools, including a designed pool for GTP
aptamers. This pool design approach can thus provide a
systematic method for constructing structured pools that
can directly guide experimental pool synthesis and in vitro
selection of complex RNAs. Automation of our pool design
method is presently under way.

FIGURE 1. Modeling the RNA pool generation process using mixing
matrices and analysis of pool structural distributions using tree
graphs. The mixing matrix applied to any starting sequence specifies
the mutation rates for all nucleotide bases. The matrix elements of
each row represent nucleotide base (A, C, G, U) composition in a vial
or synthesis port. Mixing matrices and starting sequences can be
optimized to yield target structured pools.

Computational RNA pool design
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MATERIALS AND METHODS

Defining mixing matrices for generation
of nonrandom sequence pools

Understanding pool synthesis strategies provides clues for
improving in vitro selection technology. The standard
experimental protocol involves synthesizing DNA sequences
and then transcribing them into RNA sequences by RNA
polymerases. Current sequence synthesis strategies include
chemical synthesis of short sequences (<150 nt); enzymatic
assembly of short strands; synthesis of designed sequences
with constant (double-stranded) and variable (single-
stranded) regions; and synthesis of sequences around a
designed sequence by random and biased mutations (Wilson
and Szostak 1999). Random pools with short sequences are
normally synthesized chemically, whereas longer sequence
pools can be assembled enzymatically from shorter, chem-
ically synthesized strands using techniques such as ligation or
template-directed polymerization (Jäschke 2001; Stuhlmann
and Jäschke 2002).

Our strategy is to define substrate pools with both
random and biased sequence mutations around specific
(starting) sequences to generate designed sequences with
constant and variable regions. For this purpose, we intro-
duce the mixing matrix M, whose elements specify mixing
(or ‘‘contamination’’ or ‘‘doped’’) in the four phosphor-
amidite (A, C, G, and U [i.e., T in DNA synthesizer]) vials;
applying mixing matrices to starting sequences leads to
designed sequence pools. (Note that since successive
nucleotide bases are selected independently from the vials,
sequence synthesis methods correspond to the zeroth-order
Markov process.) This representation of pool generation or
synthesis using mixing matrices enables computational
analysis of pool sequence and structural diversity. Our goal
is to define, via computational analysis, an optimal set of
starting sequences, mixing matrices, and associated weights
for a given target structural distribution in the pool. Figure
1 illustrates pool design and synthesis via mixing matrix
and analysis of sequence/structure space.

For pool synthesis using four vials or ports, the corre-
sponding mixing matrix M is a 434 matrix that specifies
the molar fractions of nucleotide components A, C, G, and
U (T) in the four vials. Thus, the ‘‘ij’’ element of M (i.e.,
Mij) denotes the molar fraction of base j in the vial ‘‘for
base i.’’ It describes how we can dope that vial for i by
introducing other bases j 6¼i into it as well. The design
problem involves selecting those doping ratios and starting
sequences. For example, MAU is the fraction of U (T)
nucleotides in the vial for A, MAA is the fraction of A in the
vial A, and MUA is the fraction of A in the vial U (T). Thus,
the elements of each row of the matrix sum to unity:

+
j¼A;C;G;U

Mij ¼ 1:

If the DNA synthesizer is to produce a fixed sequence, then a
vial for base i has 100% base i and zero fraction of other bases
(i.e., Mii=1 and Mij=0 for i6¼j). If Mii<1 and Mij6¼0,
contaminations are introduced, as specified by the off-diago-
nal elements of M. The expected number of mutations in a
synthesized sequence is determined by

+
j¼A;C;G;U

Njð1�MjjÞ;

where Nj is the number of nucleotides of type j in the
original sequence.

Ideally, we would like to determine the mixing matrices
M for a target structural distribution or on the basis of
specific biological-motivated contamination protocols. In
practice, the inverse design problem—specify M and
analyze the resulting structural distribution—is much
easier to perform. We thus construct different mixing
matrices motivated by biological covariance mutations
and analyze their coverage of sequence space via a standard
clustering method. Direct modeling of pools generated by a
specific mixing matrix can be made by exploiting correla-
tions between bases in folded RNAs. For example, the bases
in paired and unpaired regions are correlated, allowing
assignment of matrix elements for mutating bases in such
regions.

Our biological motivation for choosing the mixing
matrix classes is as follows. We consider mixing matrices
with symmetric elements, MAU=MUA, MCG=MGC,
MGU=MUG, to preserve base pairs. Such matrices cover
the sequence subspace approximating covariance muta-
tions (e.g., AU to UA, CG to GC, GC to UA). Covariance
mutations have been used to analyze the secondary struc-
ture and sequence consensus of RNA sequence families. For
example, this approach has been successfully applied to
search for tRNA-related sequences and other small RNAs
(Eddy and Durbin 1994). Alternatively, to disrupt stems
and generate new structures, we can consider mixing
matrices that do not preserve base pairs. Such matrices
include asymmetric matrices without the property of
covariance mutations. Noncovariance mutations, including
random mutations, are commonly used to generate
sequence pools for in vitro selection applications.

To sample the sequence space, we define five classes of
mixing matrices motivated by biological considerations,
based primarily on sequence transformations associated
with covariance mutations. The mixing matrix classes are
characterized by the following matrix elements: (A) varying
diagonal elements Mii with the condition MAA=MCC=
MGG=MUU; (B) MCC=MGG=1; (C) MAA=MUU=1; (D)
MAC=MUG=1; and (E) MCA=MGU=1. Within each class,
several mixing matrices are constructed whose elements
are distributed uniformly in steps of 0.25. A total of 22
mixing matrices representing the five classes are displayed
in Figure 2. The matrix classes to which they belong are as
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follows: class A matrices 1–6, class B matrices 7–10, class C
matrices 11–14, class D matrices 15–18, and class E
matrices 19–22. Note that in vitro experiments effectively
use random pools generated by a constant 434 mixing
matrix, where all 16 elements are 0.25; this corresponds to
our matrix 4.

Class A mixing matrices 1–6 are obtained by varying the
magnitude of the diagonal elements. These matrices do not
necessarily generate structure-preserving mutations. New
RNA folds may be obtained from known RNAs through
such noncovariance mutations. Matrix classes B–E tend to
generate sequences preserving the original secondary struc-
ture, although the mixing matrices also alter bases in the
unpaired regions. Specifically, matrix classes B and C tend
to preserve CG and AU base pairs, respectively, by fixing
bases associated with these base pairs; matrices in class D
convert AU to CG base pairs; and matrices in class E
transform CG to AU base pairs. Thus, our constructed
matrix classes represent both covariance and noncovariance
mutations to allow generation of pools
with target structures and enhance pool
sequence and structural diversity.
Asymmetry adds additional variability;
asymmetric mutation rates for base
pairs can introduce defects in stems.
These matrix properties are summa-
rized in Table 1.

Role of graph theory in pool design

RNA graph theory aids in pool design
in three ways. First, structural diversity

in designed pools can be assessed quantitatively using sets
of enumerated graphs, as we have done for random pools
(Gevertz et al. 2005). Second, graph theory analysis suggests
many RNA-like motifs that have not been observed (see
RAG Web resource at http://monod.biomath.nyu.edu/rna),
and thus pool design using mixing matrices can target these
motifs. Third, graph motifs are intuitively cataloged in
RAG as n-vertex families, naturally suggesting groupings to
consider in pool design. Thus, RNA graphs define the space
of RNA topologies or shapes for assessing and designing
RNA pools. A similar representation of abstract RNA
shapes using bracket notations has also been developed
by Giegerich et al. (2004).

In RAG, RNA graphs are organized into n-vertex families,
and members of a family are ordered using a topological
index (i.e., Laplacian eigenvalues) (Fera et al. 2004; Gan et al.
2004). Structural complexity can be measured by the graph’s
vertex number (V) and the second smallest Laplacian
eigenvalue (l2). For example, a linear chain has a smaller

FIGURE 2. Our five classes of 22 mixing matrices (MM) for generating diverse sequence pools. The matrix classes are developed based on
alteration of diagonal elements (class A) and covariance mutations (classes B–E). For pool synthesis using four vials, the mixing matrix is a 434
matrix specifying the molar fractions of nucleotide components A, C, G, and U in the four vials. The columns represent the molar fraction of the
four bases in vial for each base denoted in each row.

TABLE 1. Properties of five mixing matrix classes for pool generation

Mixing matrix class Condition Effect Symmetry

A: 1–6 MAA=MCC=MGG=MUU Variations of random pools 1–2, 4–6
B: 7–10 MCC=MGG=1 Conservation of C and G 7, 10
C: 11–14 MAA=MUU=1 Conservation of A and U 11–12, 14
D: 15–18 MAC=MUG=1 Covariation of AU to CG None
E: 19–22 MCA=MGU=1 Covariation of CG to AU None

Note that symmetric mixing matrices have symmetric elements (e.g., MAU=MUA,
MCG=MGC, MGU=MUG) that cover the sequence subspace approximating covariance
mutations (e.g., AU to UA, CG to GC, GC to UA).

Computational RNA pool design
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eigenvalue than a branched structure. The number of motifs
in an n-vertex family increases with n, the number of vertices.
For example, the 6-vertex tree family has six distinct trees and
the 7-vertex family has 11 trees (see RAG Web resource at
http://monod.biomath.nyu.edu/rna). For easy reference, each
tree motif is labeled by vertex number and ordering within
the family; for example, members of the 6-vertex family are
labeled 61, 62, . . ., 66. Since vertex number (V) is related to
RNA sequence length L, these are constant length pools; in
fact, we found empirically that L=20(V�1) (Gan et al. 2003).
Our pool design will focus on tree structures because RNA
folding algorithms for tree structures are efficient; computa-
tionally demanding pseudoknot folding algorithms are also
available (Rivas and Eddy 1999; Ren et al. 2005). RNA graph
theory also provides a complete set of pseudoknot and
nonpseudoknot motifs for more general assessment of pool
structural diversity.

Starting sequences for pool generation

The six starting sequences with distinct tree structures (Fig.
3) are 70S (chain F) (80 nt), tRNA (81 nt), P5abc domain
of group I intron (56 nt), GTP-binding aptamer (69 nt),
modified P5abc domain (51 nt), and modified GTP-
binding aptamer (54 nt). As shown in Figure 3, distinct
tree structures are represented as graphs by converting
stems to edges and other structural elements (e.g., loop,
bulge, etc.) to vertices according to tree graph rules
developed previously (Gan et al. 2003). As shown in Figure
3, the Laplacian eigenvalue (l2) indicates the structural
complexity of starting sequences. Generally, the starting
structure allows exploration of the structural neighbors of
that structure via mutations. For random mutation rates
(constant matrix elements of 1/4), the generated pools have
no memory of the starting sequence. We generate pools
with all possible combinations of 22 mixing matrices and
six starting sequences for pool structured designs.

Mathematical relations between RNA sequence pool
and structure space

Here we define the mathematical relations between the
RNA sequence pool and the corresponding shape space
using RNA graphs and mixing matrices (MM). Specifically,
the process of generating the sequence pool using a mixing
matrix M and a starting sequence S can be mathematically
formulated. For a 434 mixing matrix M and an n-nt
starting sequence S=s1s2s3. . .sn, where si is A, C, G, or U, the
43n probability matrix Y defining the effect of M on S is

Y ¼ ½MTðX1Þ;MTðX2Þ;MTðX3Þ; � � � ;MTðXnÞ�; (1)

where the four-component vector Xi, i=1, 2, . . ., n,
represents the nucleotide base:

Xi ¼
½1; 0; 0; 0�T if si ¼ A;
½0; 1; 0; 0�T if si ¼ C;
½0; 0; 1; 0�T if si ¼ G;
½0; 0; 0; 1�T if si ¼ U:

8>><
>>:

(2)

The matrix Y represents the sequence pool generated by M
with starting sequence S. For example, if

M ¼ MM2 ¼

0:7 0:1 0:1 0:1
0:1 0:7 0:1 0:1
0:1 0:1 0:7 0:1
0:1 0:1 0:1 0:7

2
664

3
775

FIGURE 3. Starting sequences and their secondary structures for
pool synthesis using mixing matrices. Displayed are the secondary
structures and corresponding tree graphs for four existing and two
modified existing RNAs. Laplacian eigenvalue (l2) of the tree graph
indicates the structural complexity.
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and

S ¼ CAU; i:e: X1 ¼

0
1
0
0

2
664

3
775; X2 ¼

1
0
0
0

2
664

3
775; and X3 ¼

0
0
0
1

2
664

3
775

0
BB@

1
CCA;

then Y is given by

Y ¼

Y 11 Y12 Y13

Y 21 Y22 Y23

Y 31 Y32 Y33

Y 41 Y42 Y43

2
664

3
775 ¼

0:1 0:7 0:1
0:7 0:1 0:1
0:1 0:1 0:1
0:1 0:1 0:7

2
664

3
775:

The probability of finding a new sequence S9 in the
pool can be calculated from Y. For example,
P(S9=ACU)=Y11dY22dY43=0.1d0.1d0.7 and P(S9=GUC)=
Y31dY42dY23=0.1d0.1d0.1. Similarly, we can calculate the
frequency of sequences with a specified base-pairing
scheme using this mathematical formulation. However, a
rigorous mapping of sequence space (Y) to shape space
(possible RNA graphs) requires an RNA folding algorithm,
as described in our previous work (Gan et al. 2003).

The challenge in computational pool design is to find an
optimal set of mixing matrix (M), starting sequence (S), and
weight (or pool fraction) for generation of target-structured
pools. In principle, the mixing matrix can be calculated
using statistical thermodynamics from the distribution of
shapes in the designed pool. Assuming that the designed
pool consists of N noninteracting RNA molecules, the
probability of finding topology t in the pool is

PðtÞ ¼ N�1 +
N

i¼1

+Ei

^
trðEiÞ exp½�bEðSiÞ�

+Ei
rðEiÞ exp½�bEðSiÞ�

; (3)

where E(Si) is the energy of sequence Si, b=1/kT, r(Ei) is the
density of states, and t̂ is an RNA topology operator defining
tree or pseudoknot shapes enumerated by RNA graph
theory. Equation (3) defines the relation between sequence
pool {Si} and target structural distribution P(t). Recently, we
calculated P(t) distributions for 25–100 nt random pools
using a folding algorithm and a program for converting
secondary structures into tree graphs (Gevertz et al. 2005).
Thus, the goal is to determine the sequence pool {Si}, or
mixing matrices generating that pool, to produce the target
distribution P(t). In the Appendix, we describe a practical
protocol for finding optimal mixing matrices approximating
the target P(t) based on analyses of sequence space and pool
structural distribution. Alternative pool design methods may
also be developed based on Equation (3).

Pool sizes

For practical reasons, our computations used relatively
small pools of 10,000 sequences. To show the effect of pool

size, Figure 4 plots the frequency of several tree motifs (41,
42, 51, 52, 53, and 61) for pool sizes of 5,000–60,000
sequences using mixing matrix 4 (MM4) and the initial
tRNA sequence. We see that the pool fractions for distinct
tree motifs saturate beyond 5000 sequences, indicating that
the error due to sample size is small. The rapid saturation
of pool fraction stems from mapping secondary structures
using simple graphs. If detailed motif features (size of
loops, stems, etc.) are incorporated into the mapping,
larger pool sizes will certainly be required.

Measures of sequence and structure similarity

RNA graphs allow global analysis of RNA secondary
structures. To analyze sequence and structure space of
designed pools at the base level, we use two standard
measures of distance between any two RNAs: Hamming
distance and tree edit distance. The Hamming distance is
the number of differing letters between two equal-length
RNA sequences aligned end to end (Hamming 1987). The
tree edit distance between two (full) tree secondary struc-
tures measures the minimum sum of the cost (insertion,
deletion, and replacement of nodes) along an edit path for
converting one tree into another (Hofacker 2003). We use
the tree edit distance measure as implemented in RNA-
distance of the Vienna RNA package available at http://
rna.tbi.univie.ac.at. Other distance measures, such as string
edit distance or base-pair distance implemented in RNA-
distance (Hofacker 2003), can also be used to compare
two RNA structures; also available are the more sophisti-
cated sequence/structure alignment algorithms Foldalign
(Havgaard et al. 2005) and Dynalign (Mathews and Turner

FIGURE 4. Effect of pool size on pool fractions of selected tree
motifs. The pools are generated using random mixing matrix 4 and
starting tRNA sequence in Figure 3B.
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2002). Here we use Hamming and tree edit distances
together with a clustering technique—the multidimen-
sional scaling (MDS) method (Cox and Cox 1994) imple-
mented in the R statistical package (http://www.
r-project.org)—to map the RNA sequence/structure space.

RESULTS

Coverage of sequence space regions generated
by mixing matrix classes and starting sequences
is distinct from random pools

We consider our set of starting sequences (Fig. 3) and 22
mixing matrices (Fig. 2) to explore the sequence/structure
space of sequence pools and to optimize target pools.

To analyze the clustering patterns in sequence space, we
cluster all sequences generated by the mixing matrices using
a standard clustering technique (e.g., MDS), allowing
visualization of sequence similarity/dissimilarity properties

(Cox and Cox 1994). A similar procedure is commonly
used for investigating the diversity of chemical compound
libraries (Xie et al. 2000). Such analysis helps establish the
relation between each mixing matrix and the generated
sequence space. Given a pool of sequences, we define
Hamming distances (number of dissimilar bases) between
all pairs of sequences (see Materials and Methods), allowing
data projections in 2D, 3D, and higher dimensions.

Figure 5, A and B, shows the 2D and 3D clustering of
sequences generated by 22 mixing matrices using starting
sequences for the modified P5abc (Fig. 3E) and 70S (Fig.
3A) RNAs, respectively. In Figure 5A, we see that the
sequences generated by the five mixing matrix classes and
the P5abc starting sequence cover distinct regions of the
sequence space, especially the boundary and central
regions. The boundaries are spanned by matrix classes B–E,
and the central region by matrix class A. Intriguingly, the
random MM4 produces sequences that are localized in
sequence space, showing that the standard approach does

FIGURE 5. Two- and three-dimensional clustering plots using the MDS transformation for sequences generated from 22 mixing matrices
(labeled 1–22) (A) starting with a modified P5abc domain (Fig. 3E) and (B) with 70S (Chain F) (Fig. 3A). The distance between any sequence pair
is the Hamming distance, a measure of the number of dissimilar nucleotide bases. Axes represent two or three largest components of the
projection. Each color represents a sequence pool generated by one of the 22 mixing matrices; the ‘‘3’’ mark on the left represents result for an
invariant sequence transformation corresponding to diagonal matrix Mii=1. The mixing matrices are grouped into five classes (A–E) according to
their matrix properties (Table 1).
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not provide an efficient sampling of diverse regions of
sequence space in agreement with observations. More
adequate sampling of sequence space is provided by the
nonrandom mixing matrices. The 70S starting sequence
yields similar global 2D and 3D clustering patterns: the five
matrix classes yield clusters in distinct sequence regions
(Fig. 5B). Although the 22 mixing matrices of Figure 2
provide a comprehensive coverage of the sequence space,
some regions remain sparsely populated, indicating that
the matrix classes must be expanded for more com-
plete coverage. Still, the chosen matrix set is diverse
enough for initial assessment of our structured pool design
concept.

RNA motif distributions depend on generating
mixing matrices

By ‘‘folding’’ the resulting pool sequences using Vienna
RNAfold and converting motifs into tree graphs, we can
assess each pool’s structural distribution (Gan et al. 2003;
Gevertz et al. 2005). Figure 6 shows the frequencies of
various tree motifs in pools generated by the 22 mixing
matrices starting with the 42 tree motif from the modified
P5abc (Fig. 3E). Corresponding distributions for all six
starting sequences in Figure 3 are shown in Table 2. In
Table 2, populations of <0.5% are reported as 0.

First, it is evident that motif distributions in our
designed pools vary significantly from those in random
pools (MM4; see arrow and dot-filled histograms). For
example, with the Figure 3E starting sequence, the 42 tree
motif has a yield of z8%, for the random mixing matrix,

versus 79%, 46%, and 34% in matrix pools 7–9, which do
not mutate C and G bases, respectively. At the other
extreme, matrices 20–22 produce small proportions (5%–
6%) of 42 tree structure. For the 31 tree motif, mixing
matrices 5, 6, 14, 15, 19, 20, 21, and 22 generate higher pool
fractions than the random pool 4, whereas matrices 7–13
yield considerably lower numbers. Thus, motif distribu-
tions depend on both the mixing matrix and the starting
sequence because different sequence space regions result.
Because the overlap of sequence regions of our 22 pools is
weak, the motif distribution is very different in each case
(Fig. 5).

Second, we note a pattern in the correlation between 42

and 52 trees and between 31 and 41 trees. With the Figure
3E starting sequence, Figure 6 and Table 2 show that
sequence pools from matrices 7–13 have a large proportion
of 42 and 52 tree structures compared with the random pool
4. Similarly pools from matrices 14–22 possess >30% 31

and 41 tree structures. This pattern emerges because the 42/
52 and 31/41 tree-motif pairs are related by an internal loop
or bulge, which can be created by a few mismatched
base pairs.

Third, the structural distributions generated by a tRNA
sequence (53 tree motif; Fig. 3B) differ from those for the
modified P5abc domain (42 tree motif; Fig. 3E) in one
important respect (Table 2). The most likely motifs are the
simpler 51 and 52 trees rather than the starting 53 motif.
MM1, for example, generates only 5% 53 motif, but 26%
52 tree. In contrast, MM7, which preserves C and G bases,
generates 23% 53 trees, while other combinations of mixing
matrices and starting structures yield almost no 53 trees
(Table 2). The mean mutation rate for MM7 from the
starting tRNA sequence (Fig. 3B) is z0.1 (z8.5 positions
among 81 nt). Thus, the 53 motif populations produced by
matrices 1 and 7–11 are much higher than in random pools
(1.3%). The difficulty of generating significant populations
with the tRNA-like 53 tree motif likely stems from the lower
thermodynamic stability of 53 compared to 51 and 52 trees.
Our analysis shows that matrices 7–9 generate sequences
that are favorable for stabilizing the 53 motif because these
matrices preserve energetically favorable CG base pairs.

To increase the population of complex folds like the
tRNA-like 53 tree motif, we consider refining the mixing
matrices 7–9. Since class B matrices 7–9 produce a higher
frequency of 53 tree, we search for matrices in the neighbor-
hood of this class by exhaustively varying the elements in
each row with DMij=0.2, yielding 56 possible cases. Assum-
ing that each row is independent, the total number of
mixing matrices around the class B matrix region is 562 or
3136, since two rows (second and third) are identical and
the other two rows (first and last) have a total of 56 cases
each. We filter the 3136 trial mixing matrices, yielding
better than a 23% tRNA-like 53 tree structure. Remarkably,
12 of the 3136 mixing matrices for tRNA-like topology
fulfill our requirement forming 53 motifs. We use these

FIGURE 6. Pool fraction distributions for six tree motifs in pools
generated from 22 mixing matrices (labeled 1–22), starting with a
modified P5abc domain (Fig. 3E), which has a 42 tree motif. The
results for the random pool 4 (marked with arrow) are displayed as
dot-filled histograms.
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‘‘MMT’’ matrices (Fig. 7) to generate graph-structural
distributions with tRNA shapes, as shown in Table 3. For
example, MMT6 generates a 51% tRNA-like 53 tree motif
with 15 mutations out of 81 bases.

Note that each pool generated by the 12 mixing matrices
has 5000 sequences. Compared with the random pool,
these refined matrices generate complex structures (e.g., 53

and also 64 and 65) routinely. This search demonstrates the
feasibility of improving yields of specific structures using
appropriate mixing matrices and starting sequences.

Sequence/structure correlations exist
in designed pools

The above survey of tree structural distributions provides
an analysis of RNA shapes in designed pools. We now
analyze sequence/structure distributions at the nucleotide
base level generated by the 22 mixing matrices starting with

a 51-nt P5abc domain (Fig. 3E). In Figure 8, we use
sequence Hamming and tree edit distances to quantify
sequence and structure distances, respectively, as defined in
Materials and Methods. Recall that the Hamming distance
is the number of differing letters between two equal-length
RNA sequences aligned end to end (Hamming 1987). The
tree edit distance between two (full) tree secondary struc-
tures measures the minimum sum of the cost (insertion,
deletion, and replacement of nodes) along an edit path for
converting one tree into another (Hofacker 2003).

All mixing matrices give rise to localized distributions as
measured from the initial sequence/structure. As the matrix
diagonal elements decrease from 0.85 to 0 (class A matrices
1–6), both sequence and structure distances increase. The
sequence distance is determined by the strength of the
nondiagonal elements, with matrices 1 and 6 yielding
the smallest and largest Hamming distances, respectively.
As expected, classes B (7–10) and C (11–14) with fixed C, G

TABLE 2. Structural distributions of pools generated by 22 mixing matrices in Figure 2 starting with the six sequences in Figure 3, A–F

Starting
sequence/structure

Result:
Motif ID

Pool fraction (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(Fig. 3A), 51 41 23 21 18 21 22 22 25 25 25 25 18 14 10 32 33 31 22 17 35 38 39 40
42 7 8 9 11 11 12 3 3 3 3 6 9 9 14 17 14 25 7 8 6 6 5
51 35 28 26 24 24 24 48 39 39 39 36 23 25 18 22 19 22 26 28 26 25 28
52 11 19 22 21 21 21 5 9 9 9 18 24 26 12 12 20 19 22 13 14 16 8
61 14 12 12 9 8 8 14 17 17 17 15 13 16 4 3 2 2 12 5 4 4 5

(Fig. 3B), 53 41 9 9 11 15 16 18 7 9 10 9 11 11 12 24 29 33 31 15 7 9 11 17
42 6 7 6 9 9 9 1 3 6 5 5 6 7 15 6 7 5 7 6 6 4 10
51 18 20 22 23 25 23 15 13 17 16 23 22 22 19 24 25 26 25 20 18 23 24
52 26 27 24 23 22 23 12 17 14 28 20 21 20 20 12 9 11 22 23 23 19 22
53 5 1 1 1 1 1 23 12 13 3 3 1 1 0 0 0 0 0 3 3 2 1
61 10 12 14 12 12 11 7 8 11 10 15 16 14 6 10 8 9 13 12 12 14 11

(Fig. 3C), 52 21 0 1 2 4 5 5 0 0 0 1 0 0 1 20 6 6 3 0 4 4 5 7
31 8 19 24 31 33 34 1 5 7 12 13 19 14 47 34 38 32 22 25 30 32 39
41 21 34 39 39 38 38 5 18 28 31 19 29 24 22 26 28 23 40 29 35 33 36
42 30 18 13 11 10 10 31 22 9 18 24 19 22 8 16 18 26 13 21 12 9 8
51 12 15 14 10 10 9 3 9 10 13 18 15 14 2 6 3 4 15 11 14 15 8
52 27 11 7 4 4 4 60 44 47 22 22 15 23 1 12 8 11 9 10 4 6 2

(Fig. 3D), 52 31 2 5 7 11 12 12 0 1 1 5 3 5 4 23 4 9 8 6 8 13 10 21
41 30 23 25 29 30 30 2 6 8 19 16 22 17 32 28 30 26 27 32 34 34 43
42 13 11 11 12 13 13 9 11 13 14 11 14 16 14 8 12 12 11 7 9 10 8
51 24 22 25 23 22 22 1 2 2 12 17 21 14 15 26 22 18 25 19 20 21 17
52 16 24 19 16 15 15 52 46 48 33 38 26 35 9 28 20 25 20 28 17 20 7
61 5 6 7 5 4 4 0 0 0 2 4 5 3 2 2 3 3 6 3 3 3 2

(Fig. 3E), 42 21 1 2 4 8 10 11 0 2 2 1 1 1 1 23 3 5 4 2 4 6 6 10
31 13 26 35 43 45 46 4 12 15 21 21 23 19 48 49 42 38 33 50 51 50 55
41 22 37 40 34 33 31 4 13 20 30 30 40 31 22 29 40 35 43 26 31 34 29
42 47 18 10 8 7 7 79 46 34 25 25 18 26 5 15 7 13 10 16 6 5 5
51 6 9 8 6 4 4 0 4 5 8 8 11 10 2 3 5 6 8 2 4 3 2
52 12 7 3 2 1 1 13 23 24 14 14 7 11 0 1 1 3 3 1 1 2 0

(Fig. 3F), 42 31 19 26 29 37 40 39 12 16 18 28 22 28 28 46 32 41 41 30 33 40 45 52
41 24 36 40 37 36 36 5 12 11 27 32 35 28 25 41 37 33 42 32 34 33 29
42 37 19 12 10 9 10 67 54 53 29 31 22 32 8 21 13 15 13 25 16 14 7
51 5 10 11 8 6 6 0 0 0 5 6 7 4 3 3 4 4 9 3 3 3 3
52 13 7 5 3 2 2 13 15 13 11 8 6 6 1 1 1 1 4 4 3 2 1

Each pool has 10,000 sequences. Bold fonts represent frequencies greater than those in the random pool (MM4).
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and A, U, respectively, produce distributions with small
Hamming distances. In contrast, classes D (15–17) and E
(19–21) produce sequences with the maximum Hamming
distance because no identity base transition is allowed.

As the mixing matrices are altered, the distribution of
the tree edit distances also changes. Generally, tree edit
distance increases with mutation rate. For example,
Figure 8 shows that tree edit distances become larger as
diagonal elements of matrix classes A, B, and C decrease.
Changing C and G bases (matrix class C) has a larger
effect on the starting structure than changing A and U
bases (matrix class B), as evident from the pool distances
from the origin. This is due to lower free energies
associated with GC base pairs compared to AU base
pairs. Thus, Figure 8 indicates that the distribution of
sequence/structure distances from the initial sequence is
controlled by the elements of the mix-
ing matrices. Although the patterns of
sequence/structure distributions are
not sensitive to the starting sequences
(data not shown), the densities within
the localized regions are markedly
changed. Figure 8 shows that the pools
generated by most mixing matrices
(except for 1, 8, and 9) and starting
sequences of a modified P5abc domain
produce a single cluster. We find that
contour plots with string edit distance
or base-pair distance (data not shown)
show somewhat less information about
pool structural properties than those
with tree edit distance. Other second-
ary structure measures may also be

used to capture structural differences among folds in
the same vertex or tree class. For example, it is informa-
tive to know the distribution of stem, loop, and bulge
sizes (Fontana et al. 1993).

Parameter optimization can lead to design
of structured RNA pools

The preceding analysis of sequence space and assessment of
structural distributions generated by nonrandom mixing
matrices allow design of target structured pools. Here we
use the pool design algorithm (Appendix) to develop
several structured pools by selecting an optimal combina-
tion of starting sequences, mixing matrices, and associated
weights {(Si, Mi, ai)}. The best combination for a target
pool is dictated by the frequency data (Fig. 6; Tables 2, 3).

To illustrate, Table 4 shows four examples of designed
pools that are rich in specific tree structures (e.g., 41, 51,
52); also displayed are their pool characteristics (mixing
matrix weights and tree motif frequencies). Specifically, our
target pools are: Pool TA with 41 and 42 structures; Pool TB

with 51, 52, and 53 structures; Pool TC with 42, 52, and 53

structures; and Pool TD with 41, 42, and 53 structures. Pools
TA and TB are 4- and 5-vertex pools, respectively, and Pools
TC and TD are pools with mixed n-vertex structures. Each
designed pool represents an optimal combination of start-
ing sequences, mixing matrices, and associated weights
derived using Step 5 of our design algorithm (see Appen-
dix). Briefly, we initially choose pool fractions T1, T2, . . .,
Tn for target motifs and the number of mixing matrices to
approximate the target pool. We then use Equation (6) in
the Appendix to calculate the weight a1, which depends on
T1, starting sequence S1, and mixing matrix M1. Next, we
minimize the error between the target and estimated target
pool fractions, Equation (8) in the Appendix, over all pools
generated by starting sequence/mixing matrix pairs {(Si, Mi)}.
This procedure yields optimized starting sequences, mixing

FIGURE 7. Twelve refined or variants of class B mixing matrices for
enhancing pools with the tRNA-like (53) structure (MMT); they
generate pools with at least 23% 53 tree motif.

TABLE 3. Structural distributions of pools generated by 12 refined class B mixing matrices
in Figure 7 starting with the tRNA sequence in Figure 3B

Starting
sequence/structure

Result:
Motif

ID

Pool fraction (%)

Random 1 2 3 4 5 6 7 8 9 10 11 12

(Fig. 3B), 53 41 15 8 1 0 1 0 1 2 19 10 6 2 7
42 9 3 0 0 2 13 1 1 2 1 1 3 3
51 23 18 1 5 2 0 14 8 20 20 16 16 19
52 23 13 12 5 9 16 15 18 7 7 10 27 19
53 1 24 50 50 35 39 51 30 38 44 29 27 24
61 12 9 2 1 2 1 1 5 4 5 6 3 7
62 8 5 3 5 2 4 6 9 4 4 6 8 9
64 1 9 19 15 20 22 1 9 2 6 12 2 3
65 0 8 10 15 21 5 8 11 2 1 9 9 6

Bold fonts represent frequencies greater than those in the random pool.
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matrices, and weights; the mean mutation rate is calcu-
lated based on these sequences, mixing matrices, and their
weights.

As shown in Table 4, the optimized Pool TA for a 30% 42

tree (T1) and for a 25% 41 structure (T2) is constructed
using the Figure 3E starting sequence for matrices 8 and
3 with weights of 0.556 and 0.444, respectively. The mean
mutation rate is 0.337 compared to the random base
mutation rate of 0.75. Correspondingly, our designed pool
for 41 and 42 motifs contains 25% and 30% 41 and 42 trees,
respectively, compared with 29% and 12% for the random
pool (MM4). The increase of 42 species is accompanied by
the decrease of the 51 structure to 6% compared with 23%
for the random Pool TF. The next highest species in Pool
TA is 31 (22%).

Pool TB, targeting 20% each of the 51, 52, and 53

structures, is generated from the Figure 3A sequence for
51 with matrix 13 at a weight of 0.18 and the Figure 3B
sequence for 53 with matrix T12 at a weight of 0.82. For this
pool optimization, we expanded our mixing matrix/start-
ing sequence repertoire to include those in Table 3 (the 12
mixing matrices for generating pools with a high frequency
of 53 motifs, which are extremely rare in random pools).
Thus, this optimization was performed over the set of 144
(2236+1231) mixing matrix/starting sequence pairs.

Resulting Pool TB contains 20% each 51, 52, and 53 tree
motifs, compared with 23%, 16%, and 0% for the random
pool (MM4), matching the target exactly. We found that
using the 12 MMT matrices dramatically increases the
population of the 53 motif (at a cost of decrease of 31, 41,
and 42 motifs). The 61 structure (9%) is the next highest
species in Pool TB.

Target Pools TC and TD are mixed pools with both 4-
and 5-vertex tree structures, designed from our 144 mixing
matrix/starting sequence pairs. The targets for Pool TC are
42, 52, and 53 tree motifs, and those for Pool TD are 41, 42,
and 53 tree motifs (20% for each). Pool TC is generated by
the Figure 3E sequence (MM9, 0.60) and the Figure 3B
sequence (MMT2, 0.40), and Pool TD is produced by the
Figure 3B sequence (MMT6, 0.329) and the Figure 3F
sequence (MM13, 0.608). The results are as expected: Pool
TC has frequencies for 42, 52, and 53 motifs of between 19%
and 20%; Pool TD has frequencies for 41, 42, and 53 trees of
17%, 20%, and 20%, respectively, all within 3% of the
target.

Our designed pools above, involving three of the 22
mixing matrices and two of the 12 MMT matrices, only
touched the surface of possibilities. Still, in practice, it
might be preferable to approximate a target pool using a
small number of mixing matrices. Once our algorithm is
automated (Appendix), exploration of pool design can be
routinely performed.

A designed pool improves the selection
of GTP aptamers

We now apply our pool design approach for enhancing
GTP-binding aptamers. Szostak’s group recently found that
the GTP aptamer’s binding affinity is correlated with the
informational complexity (Carothers et al. 2004, 2006).
Informational complexity is correlated with structural
complexity (e.g., number of stems, vertex number of tree
graph). As the information content and binding affinity de-
crease (Carothers et al. 2004, see their Fig. 1, panels A and

FIGURE 8. Contour plots of sequence/structure relationships using Hamming distance versus tree edit distance for pools generated by 22 mixing
matrices, starting from a modified P5abc domain (Fig. 3E). Note that the X and the Y axes are always 0–100 and 0–60, respectively, and that each
intensity bar indicates the frequency of joint distance distributions (the frequency outside the box is 0). There are 10,000 sequences in each pool.
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B), the aptamers have simple structures such as 21 or 31 tree
motifs. Specifically, a high-affinity GTP aptamer with high
informational complexity (Carothers et al. 2004, see their
Fig.1, panel C) has the 52 tree structure (Fig. 3D).
Interestingly, no GTP aptamer with a 42 tree structure
(Fig. 3F) has been reported, although it is structurally
similar to the 52 tree. Because the frequency of the 42 motif
is only 12% in the random Pool TF (Table 4), we propose
designing a GTP aptamer pool by enriching the pool with
52 and 42 motifs. Our target pool fractions (Ti) are 20% for
42 and 26% for 52. Our optimization yields Pool TE (Table
4) as a combination of two subpools: the Figure 3D
sequence (MM13, 0.625) and the Figure 3F sequence
(MM10, 0.375). The frequencies of 42 and 52 trees in the
designed pool are 21% and 26%, respectively, nearly as
desired and very different for the 12% and 16% distribu-
tions of these motifs in the random Pool TF. The sequence/
structure contour plots in Figure 9 show differences
between the designed and random pools; the designed pool
has a relatively high mean mutation rate of 0.349.

DISCUSSION

Following our previous analysis that random RNA pools
are not structurally diverse (Gevertz et al. 2005), we have
proposed computational tools for designing RNA pools for
enhancing in vitro selection based on sequence/structure
relationships. We represent pool synthesis experiments as
mixing matrices applied to starting sequences; this ap-
proach can be likened to considering mutations around
given sequences. Such mutations are then optimized to
target specific structures and increase structural diversity.
By constructing five classes of mixing matrices based
mainly on conservation of base pairs, we have developed
22 representative mixing matrices covering diverse regions
of the sequence space. We showed that sequence diversity
represented by the mixing matrices leads to greater struc-
tural diversity, allowing the design of pools with target
structural characteristics through optimization of starting
sequence/mixing matrix pairs and associated weights (pool

fraction for each pair). The optimized mixing matrix/
starting sequence pairs and weights provide sufficient
information for pool synthesis.

Thus, our work suggests that designing pools for
enhancing in vitro selection can follow several research
avenues. Maximizing sequence and structural diversity
broadly can increase the probability of finding a given
RNA property using nonrandom mixing matrix/starting
sequence pairs. An advantage of this approach is that
designed pools can be directly implemented in pool
synthesis. Alternatively, we can target a specific structural
distribution by determining optimal mixing matrices and
starting sequences without explicit sequence/structure

TABLE 4. Five designed structured pools (TA–TE) and their characteristics

Target motifs in designed
pool (% in pool)

Weights of mixing matrices
(starting sequence in Fig. 3)

Frequency of tree motifs (%)
Mean

mutation rate31 41 42 51 52 53 61 62 64 65

TA: 41, 42 (25%, 30%) 55.6% MM8 (Fig. 3E), 44.4% MM3 (Fig. 3E) 22 25 30 6 14 0 0 0 0 0 0.337
TB: 51, 52, 53 (20%, 20%, 20%) 18% MM13 (Fig. 3A), 82% MMT12 (Fig. 3B) 0 8 4 20 20 20 9 7 2 5 0.147
TC: 42, 52, 53 (20%, 20%, 20%) 60% MM9 (Fig. 3E), 40% MMT2 (Fig. 3B) 9 12 20 3 19 20 1 1 8 4 0.234
TD: 41, 42, 53 (20%, 20%, 20%) 39.2% MMT6 (Fig. 3B), 60.8% MM13 (Fig. 3F) 17 17 20 8 10 20 0 2 0 3 0.343
TE: GTP 42, 52 (20%, 26%) 62.5% MM13 (Fig. 3D), 37.5% MM10 (Fig. 3F) 13 21 21 11 26 0 1 0 0 0 0.349
TF: Random 100% MM4 (Fig. 3D) 11 29 12 23 16 0 5 2 0 0 0.750

Each designed pool is specified by a set of mixing matrix/starting sequence/weight (in percent). The optimal set of mixing matrix/starting
sequence/weight for a target pool is determined by our pool design algorithm in the Appendix. The mean mutation rate is calculated using
starting sequences and mixing matrices and their weights. The frequencies of targeted structures in designed pools are highlighted in bold.

FIGURE 9. Comparison of designed GTP (upper) and random
(lower) pools using contour plots of Hamming distance versus tree
edit distance. The GTP pool is generated by 62.5% MM13 starting
with the 52 motif (Fig. 3D) and 37.5% MM10 starting with the 42

motif (Fig. 3F). The random pool is generated using the starting
sequence in Figure 3D.
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mapping. Our targeted pool design can be applied to
known structures, novel motifs (Kim et al. 2004), complete
sets like n-vertex pools, or perhaps submotifs of RNAs
(Zorn et al. 2004). Of course, a more comprehensive set of
mixing matrices covering wider regions of the sequence
space should be sought systematically. For example, matri-
ces conserving noncanonical base pairs (AC, CA, GA, AG,
etc.) can complement our current set, which conserves
canonical base pairs; there are 12 such classes from a total
of 16 possible base pairs.

Another design theme is enrichment of pools with
structures resembling a target-active molecule. We illus-
trated this approach using GTP-binding aptamers. The
conventional approach – designing pools in the sequence
neighborhood of a target molecule (Lau et al. 2004; Ohuchi
et al. 2004; Yoshioka et al. 2004), however, does not ensure
that the designed pools will cover the structural neighbors
of the target molecule, unless sequence mutations are made
to localized sequence segments, as is commonly done in
many experiments. In contrast, our optimized pool design
approach (Appendix), allows enrichment of pools with
specific RNA topologies or structures (e.g., tRNA-like 53

tree). In addition, novel tree topologies in the neighbor-
hood of the target molecule, as suggested by structural enu-
meration (Kim et al. 2004), could be similarly engineered.

Clearly, further developments of sequence/structure
analysis techniques are needed to improve the pool design
and overcome specific limitations. Understanding the
sequence/structure relationship is one of the most funda-
mental biological problems not only for RNA but also for
proteins. In our analysis, we are limited by the usage of
numerical secondary structure folding algorithms, which
are still imperfect and inefficient for predicting pseudoknot
structures. However, our risk has been reduced here by
‘‘folding’’ of small RNAs (<100 nt) only and focusing on
statistical properties (e.g., frequencies of topologies). A
general strategy for improving structure prediction is to
consider many suboptimal structures using, for example,
the Boltzmann sampling method (Ding and Lawrence
2003).

Ultimately, RNA tertiary and higher-order folding is
essential to understand RNA function. Perhaps progress on
this problem will be realized in the near future. For now, we
offer our sequence pools possessing diverse RNA secondary
structures as an approach to enhance in vitro selection
technology.

Our pool design algorithm can be fully automated given
target RNA shapes (and possibly starting sequences). We
are developing a publicly available Web server to allow
experimentation of pool design and analysis of RNA pool
properties (e.g., base composition, size distribution of
stems, bulges, etc.), and to define optimal mixing matrices
for pool synthesis. Experimental synthesis of designed pools
(specific structural motifs and their frequency) can be
performed by using optimized starting sequences, mixing

matrices, and associated weights. When available, location
of this server will be noted on our group Web site (http://
monod.biomath.nyu.edu). We hope that this tool will help
stimulate the productive interaction between theoretical
and experimental efforts.
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APPENDIX

An algorithm for designing structured RNA pools

Our pool design algorithm is based on analyses of sequence and
structure spaces to allow design of specific structures, including
novel RNA-like motifs identified using graph theory analysis (Kim
et al. 2004). The algorithm below assumes that we have available
reference data such as shown in Tables 2 and 3 that relate mixing
matrices and starting sequences to motif distributions in resulting
pools. The sequence space regions are mapped via various mixing
matrices using a standard clustering method; the structural
distribution is computed by converting secondary structures into
tree graphs. By knowing the structural distributions of various
sequence space regions, we then can optimize the choice of starting
sequences and mixing matrices to approximate the target struc-
tured pool for future work.

Our pool design algorithm involves the following steps:

1. Specify a target distribution of topologies/shapes.
2. Define candidates for starting sequences and mixing matrices

that aim to cover the sequence space. The mixing matrices
have been constructed, for example, based on covariance
mutations. The mixing matrices and starting sequences may
remain the same for different structured pool designs. We
‘‘visualize’’ the diversity of a set of RNA sequences using a
standard sequence similarity/dissimilarity clustering based on
Hamming distance (number of dissimilar bases) between any
pair of aligned sequences. In this study, we used mainly six
starting sequences and constructed 22 mixing matrices to cover
the sequence space (see Results).

3. Compute shape frequency distributions corresponding to all
starting sequence/mixing matrix pairs, as discussed below and
detailed in our previous study (Gevertz et al. 2005). This step
analyzes pool structural diversity.

4. Choose the number of mixing matrices to approximate the
designed pool.

5. Find an optimal combination of starting sequences (Si) and
mixing matrices (Mi) and associated weights (ai) to approx-
imate the target RNA shape distribution. The mathematical
procedures for this step are detailed below.

The designed pool is composed of k smaller subpools defined by
the set {(Si, Mi, ai)}, i=1, 2, . . ., k. The above pool design
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algorithm can be fully automated given target RNA shapes (and
possibly starting sequences). We are planning to make publicly
available a Web server to allow experimentation of pool design
and analysis of RNA pool properties, and to obtain mixing
matrices for pool synthesis. Experimental synthesis of designed
pools can be performed by using trial Si, Mi, and ai.

In Step 3, the pool structural distribution is calculated by
mapping RNA secondary structures into graph space. This is done
by predicting secondary structures of all sequences using the
Vienna RNAfold package and then converting them into tree
graphs, as described elsewhere (Gevertz et al. 2005). It is known
that 73% of known base pairs are predicted by free-energy
minimization algorithms such as RNAfold for sequences with
<700 nt (Mathews and Turner 2006). For greater accuracy, the
Boltzmann sampling method can be used to generate a set of 1000
suboptimal structures (Ding and Lawrence 2003), although at a
higher computational cost (1000 times pool size). Specifically,
base-pairing information in the .ct file generated by the RNAfold
program is used to convert a secondary fold into a tree graph. The
topologies of the folds are determined using Laplacian eigenvalues
of tree graphs as implemented in our RNA Matrix Program (Gan
et al. 2004) (server available at http://monod.biomath.nyu.edu/
rna). Specifying tree topologies using eigenvalues is inexact
because different topologies can have the same spectrum; the
assignment error rate is a few percent for small tree topologies
(<10 vertices). This step is similar to the RNAshapes program,
which uses bracket notations for representing secondary structures
(Giegerich et al. 2004; Steffen et al. 2006). Unless stated otherwise,
each sequence pool has 10,000 sequences, which is adequate for
assessing structural distributions using simple tree graphs. Struc-
ture prediction and conversion to tree graphs for 10,000 80-nt
sequences require z1 h on an SGI 300 MHz MIPS R12000 IP27
processor.

In Step 5, we approximate a target structural distribution by
optimizing a set of starting sequence/mixing matrix pairs based on
pool structural frequency data. Generally, we consider a designed
pool composed of k subpools, each generated with a mixing
matrix/starting sequence pair and associated with a weight ai:
p(S1, M1, a1), p(S2, M2, a2), . . ., p(Sk, Mk, ak), where
a1+a2+. . .+ak=1 and p(Si, Mi, ai) denotes synthesizing the ai

fraction of the pool sequences using starting sequence Si and
mixing matrix Mi. Optimization of the three pool parameters Si,
Mi, and ai can be formulated as follows: If the n31 matrix T is the
target distribution with Ti fractions of structures 1, 2, . . ., n and
Fl(Si, Mi) is the pool fraction of structure l generated by starting
sequence Si and mixing matrix Mi in Tables 2 and 3, the pool
parameters (Si, Mi, ai) can be optimized by the following
equation:

T¼

T1

T2

..

.

Tn

0
BBBB@

1
CCCCA
¼ a1

F1ðS1;M1Þ
F2ðS1;M1Þ

..

.

FnðS1;M1Þ

0
BBBB@

1
CCCCA
þ � � � þak

F1ðSk;MkÞ
F2ðSk;MkÞ

..

.

FnðSk;MkÞ

0
BBBB@

1
CCCCA
; (4)

where a=(a1, a2, . . ., ak) subject to the conditions
a1+a2+. . .+ak=1 and ai$0. Since experimental implementation
of pool synthesis is simpler with fewer mixing matrices, we
consider the solution of a for k=2 below; the optimization

procedure can be generalized. Formula (4) with only two mixing
matrices M1 and M2 reduces to

T¼

T1

T2

..

.

Tn

0
BBBB@

1
CCCCA
¼ a1

F1ðS1;M1Þ
F2ðS1;M1Þ

..

.

FnðS1;M1Þ

0
BBBB@

1
CCCCA
þ ð1�a1Þ

F1ðS2;M2Þ
F2ðS2;M2Þ

..

.

FnðS2;M2Þ

0
BBBB@

1
CCCCA
: (5)

The solution for the only weight is

a1 ¼
T1 � F1ðS2;M2Þ

F1ðS1;M1Þ � F1ðS2;M2Þ
: (6)

The estimated pool fractions for the other shapes or topologies
2, 3, . . ., n are derived from the known a1, F1(S1, M1), and
F1(S2, M2) as follows:

T2 ¼ a1F2ðS1;M1Þ þ ð1� a1ÞF2ðS2;M2Þ;
T3 ¼ a1F3ðS1;M1Þ þ ð1� a1ÞF3ðS2;M2Þ;

..

.

Tn ¼ a1FnðS1;M1Þ þ ð1� a1ÞFnðS2;M2Þ: (7)

We then optimize (S1, M1), and (S2, M2) by minimizing the error

+
n

l¼1

jTl � �Tlj: (8Þ

The above procedure will allow us to obtain the optimized
parameters a1, (S1, M1), and (S2, M2) for a target distribution T.
The convergence of the procedure depends on the number of
mixing matrices and starting sequences, or coverage of the
sequence/structure space.

Received August 17, 2006; accepted January 17, 2007.
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