Modeling studies of chromatin fiber structure as a function of DNA linker length Supplemental material

Ognjen Perišić^{a,*}, Rosana Collepardo-Guevara^{a,*}, Tamar Schlick^{a,b,**}

^aDepartment of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 ^bCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, Tel.: 212-998-3116; fax: 212-995-4152

^{*}These authors contributed equally to the work

^{**}Corresponding author

Email address: schlick@nyu.edu (Tamar Schlick)

Preprint submitted to Journal of Molecular Biology

q_l (e)	х	У	z (nm)	q_l ((e)	х	у	z (nm)		q_l (e)	х	У	z (nm)	q_l (e)	х	У	z (nm)
-0.92	0.68	-0.17	1.94	0.2	8	-1.57	-4.04	1.71	Ì	-1.04	-4.14	2.60	-0.24	-0.45	1.34	-4.08	-1.56
-1.39	0.12	0.72	2.84	-1.9	8	-0.43	-4.73	1.77		-0.60	-4.38	1.15	-0.22	-1.30	3.64	-2.01	-1.48
-2.03	-0.50	-0.51	2.01	2.7	5	1.54	-2.64	1.08		-1.41	-4.84	-0.98	-0.24	-1.23	3.27	-1.25	-1.27
-2.53	1.23	0.81	2.16	-0.0)1	4.97	-1.26	1.87		-0.50	-4.88	-2.14	-0.25	-1.20	4.36	-0.27	-1.98
-0.06	-1.37	-0.74	2.86	-0.1	1	3.50	-0.95	1.30		-0.26	-2.25	-4.44	-0.22	-2.59	3.67	0.83	-1.74
2.31	0.33	-1.16	1.34	-2.4	0	4.97	0.31	1.45		-1.72	2.22	-3.52	-0.18	-2.01	3.58	3.02	-2.29
4.71	-1.11	0.62	2.37	-0.7	8	4.47	2.67	1.63		-2.04	3.42	-3.46	-0.20	-5.40	2.20	3.18	-1.96
-0.63	1.16	-0.27	0.86	3.1	4	3.22	3.03	1.37		-1.11	4.28	-1.94	-0.20	-0.20	0.34	3.22	-1.76
1.50	-0.51	1.96	2.90	-0.8	5	1.05	4.73	1.70		-0.76	4.31	2.42	-0.55	-2.47	-1.25	3.02	-1.85
-2.46	-1.41	-0.24	2.10	-0.9	13	-0.39	4.15	1.47		-0.98	3.24	3.47	-0.55	-3.24	-2.38	2.08	-1.83
-1.75	-0.80	-1.73	2.18	-1.2	8	-1.44	2.05	1.71		-2.11	-2.44	3.78	-0.57	-3.31	-3.07	1.23	-1.90
5.03	0.30	1.66	2.88	-1.4	6	3.67	2.35	1.70		2 20	-4.70	0.14	-0.04	1.25	3.09	1.56	1.02
-0.03	-1.42	1.50	2.62	-1.4	20 70	-3.88	-1.48	1.43		-2.23	-4.30	-2.30	-0.50	1 41	-1.94	-2.79	-1.72
2.82	2 41	1.04	2.02	-1.4	á	-3.28	-3.54	1.44		-0.68	-3.31	-3.82	-0.59	-5.07	-1.94	-4.05	-2.05
-2.39	0.32	2.58	2.54	-1.6	9	-2.42	-3.94	1 45		-0.57	-0.51	-5.55	-0.61	-0.82	0.26	-4 10	-1.84
-0.65	-1.51	2.66	3.11	1.0	2	1.00	-3.90	1.14		-0.27	1.29	-5.72	-0.63	-0.38	0.73	-4.81	-2.26
0.31	-2.53	-0.42	2.59	-0.9	3	2.68	-3.79	1.31		-1.24	1.29	-2.96	-0.35	0.16	1.59	-5.07	-2.39
-0.74	0.03	-2.37	1.89	-1.4	7	3.03	-2.59	1.08		-0.67	2.94	-4.01	-0.52	-0.04	1.19	-2.48	-1.19
-1.70	2.30	0.14	1.47	1.5	2	2.27	-1.93	-0.76		-0.60	4.77	-1.41	-0.53	-0.29	2.87	0.01	-1.49
-1.84	2.07	2.14	2.26	-1.5	8	5.73	-0.76	-1.69		-0.85	5.10	0.99	-0.91	-0.40	4.11	1.30	-2.33
5.27	-0.88	2.66	2.46	-2.5	3	4.96	1.40	1.16		0.72	1.01	4.21	-0.85	1.25	2.76	1.33	-1.71
-0.84	-2.69	0.95	2.55	-1.9	9	4.02	3.32	1.27		-1.22	-1.48	4.43	-0.95	-0.43	1.95	3.89	-2.59
-0.65	-2.16	0.36	2.01	-1.9	4	2.16	4.68	1.26		-1.45	-3.68	3.54	-1.04	-0.46	-0.07	4.19	-2.61
-1.59	-2.49	-2.30	2.69	-0.6	6	0.25	4.83	1.23		0.23	-4.47	0.57	-0.90	-3.22	-0.96	3.81	-2.41
-1.55	1.06	-2.09	1.45	-2.2	4	-2.14	4.51	1.30		-1.08	-4.58	-1.58	-0.92	0.06	-2.13	3.05	-2.47
-0.45	4.12	0.53	2.52	-2.1	3	-3.67	3.33	1.31		-2.58	-3.57	-2.98	-0.83	1.55	-3.12	1.91	-2.38
0.12	3.81	1.78	2.64	-1.6	5	-4.57	0.80	1.22		-0.74	-1.57	-4.95	-0.94	-0.02	-3.77	1.61	-2.69
-1.84	1.80	2.98	2.38	-0.7	6	-3.99	-2.62	1.22		-1.49	0.45	-5.20	-0.69	-1.41	-2.14	-3.53	-2.36
-2.19	-2.54	2.14	2.52	-2.2	3	-1.88	-4.15	1.12		-0.33	1.31	-3.96	-0.67	-0.81	-1.01	-4.62	-2.58
-1.57	-1.69	1.29	1.71	-1.4	9	0.57	-5.12	1.23		-1.77	2.18	-2.63	-0.57	-2.26	-0.60	-3.22	-1.83
-0.82	-3.90	0.34	2.88	-0.3	9	1.47	-4.79	1.10		-0.61	4.17	-3.00	-0.87	1.29	0.32	-2.42	-1.23
-0.79	-3.61	-1.40	2.76	-0.2	3	2.31	-3.09	0.79		-2.32	4.95	0.05	-1.19	0.03	0.73	-3.47	-1.86
-1.71	-1.25	-3.29	2.20	-2.0	2	2.69	-1.17	1.06		-1.45	4.00	3.22	-1.50	1.30	1.86	-1.01	-0.94
-0.05	0.01	-3.48	2.12	-0.0	0	4.45	-1.15	0.08		-1.09	2.34	4.21	-1.27	-1.48	2 20	-1.12	-1.02
0.00	2.52	-1.03	1.40	-0.7	9	4 99	2 35	0.98		2.26	4.20	4.49	-1.20	1.05	2 70	2.46	-2.29
-2.94	3 41	1.05	1.10	-2.0	6	2.78	3.89	0.80		-2.19	-4.84	1.32	-1.42	-2.84	1 25	2.40	-2.17
-1.83	3.00	1.00	1.97	-1.4	0	0.99	5.34	0.98		-0.73	-5.13	-0.80	-1.42	-1 11	0.84	3 51	-2.52
3.31	0.95	3.00	1.93	-0.8	1	-1.07	4.47	0.83		-0.66	-4.58	-2.45	-1.40	1.36	-0.21	2.40	-1.91
-3.12	-2.26	3.25	2.50	-0.7	8	-2.84	4.02	0.90		-3.75	-2.51	-4.22	-1.24	-0.04	-1.22	1.89	-1.88
-1.47	-3.53	1.84	2.53	0.8	2	-3.67	2.66	0.87		-0.69	-0.75	-4.98	-1.25	-2.30	-1.77	2.28	-2.32
-0.70	-3.21	0.22	2.13	-0.3	0	-4.38	-0.57	0.79		-0.74	0.22	-5.94	-1.46	1.14	-2.86	-0.42	-2.19
-2.66	-3.35	-0.82	2.17	-2.6	54	-2.88	-3.63	0.77		0.50	1.53	-4.84	-1.16	-0.56	-2.37	-2.05	-2.26
-3.31	-2.67	-1.59	1.92	-2.6	2	-0.99	-4.78	0.78		-3.39	3.20	-2.41	-0.93	0.64	-0.57	-2.34	-1.58
2.49	-1.74	-2.39	1.76	-2.0	18	2.01	-4.08	0.68		-0.76	4.39	-2.10	-1.14	-0.75	2.57	-1.26	-1.57
-1.18	-0.93	-4.17	2.31	-0.6	5	3.62	-3.37	0.78		-1.15	5.04	-0.87	-1.22	-0.66	1.90	1.57	-1.88
0.05	0.62	-3.00	1.52	0.1	6	5.47	-1.37	0.91		-3.52	4.37	1.73	-1.45	1.71	1.91	2.27	-2.37
-0.08	5.15	-1.27	2.75	-1.7	1	5.27	-0.41	0.88		-1.14	3.09	3.60	-1.51	0.78	0.47	2.59	-2.30
0.11	4.07	-1.05	2.12	0.0	5	5.24	0.62	0.47		-0.96	-0.86	4.44	-1.64	-0.31	-0.86	2.76	-2.63
-1.31	4.92	1.01	2.29	-2.0	17	4.09	2.67	0.50		-1.91	-2.71	3.12	-1.55	1.86	-2.86	0.89	-2.72
-2.56	4.17	1.42	1.97	-0.7	8	3.57	3.50	0.47		0.31	-4.08	1.84	-1.66	-0.53	-2.04	0.20	-1.99
-1.45	3.83	2.95	2.25	-3.1	.3 '0	1.91	4.20	0.45		-0.37	-3.80	0.00	-1.38	-0.20	-1.41	-2.89	-2.52
-0.85	1.54	4.13 4 9F	-2.18	-1.7	0	1 00	4.90	0.51		-1.74	-4.17	-0.89	-1.00	-1.01	2.34 1.97	0.07	-2.08
-0.34	-0.70	4.20 3.46	4.44 1.07	-2.0	12	-1.99	4.09	0.47		-0.85	-4.08	-1.70	-1.00	-4.17	-2.37	2.00 1.79	-2.24
1 50	-2.94	2.60	1.86	-1.2	2	-4.05	-1.85	0.33		-1.03	-1 94	-5.15	-1.01	-0.90	-2.60	-1.12	-2.77
-1 72	-4.00	1.00	2 10	-0.7	0	-4.03	-4 92	0.44		-4 17	0.07	-5 00	-1.60	3 1 2	-1.11	-2.99	-2.10
-0.71	-4.02	-2.19	2.29	-1.0	18	3.05	-4,17	0.44		-0.48	1.12	-5.52	-1.77	0.55	1.85	-0.22	-1.56
-1.38	-2.75	-3.71	2.22	-0.6	8	3.61	-1.97	0.33		2.85	1.38	-1.70	-0.61	-2.46	-0.27	1.29	-1.83
1.87	-2.03	-3.25	1.82	0.3	0	4.07	-1.34	0.39		4.63	2.58	-1.51	-0.86	2.57	-1.86	0.97	-2.73
-1.87	0.48	-4.36	1.93	-0.6	9	4.69	1.65	0.17		-1.56	3.82	-0.59	-1.17	-4.04	-1.44	-0.76	-2.01
-2.37	1.78	-3.26	1.55	0.9	2	2.49	3.89	0.11		-1.05	4.84	0.83	-1.90	-2.25	-1.61	-1.50	-2.48
2.83	1.85	-0.94	0.78	-1.3	6	0.65	4.79	0.13		2.45	3.17	2.26	-1.57	0.65	0.54	1.79	-2.54
-0.72	4.97	-0.33	2.18	0.8	9	-1.33	4.31	0.19		-3.06	1.41	3.86	-1.78	2.44	-0.97	1.12	-2.40
-1.16	5.90	0.03	2.18	-0.8	9	-3.21	3.31	0.16		-1.21	0.54	4.50	-1.99	-1.97	-0.59	-1.43	-1.79
-0.75	4.96	2.10	2.03	-0.1	4	-4.88	0.33	0.13		-2.01	-1.95	4.01	-2.03	-2.01	1.33	0.64	-1.87
-1.26	2.76	3.86	1.88	2.4	3	-3.55	-2.91	0.17		-2.62	-3.46	2.58	-1.99	0.16	-1.76	0.17	-3.02
-0.58	0.61	3.92	1.65	-2.4	0	0.96	-4.90	0.16		-2.56	-4.03	0.85	-1.90	-0.30	0.29	-1.58	-1.71
-2.27	-0.24	3.33	1.71	-1.3	3	1.70	-4.58	0.11		0.62	-3.43	-0.68	-1.61	-0.55	0.95	-0.95	-1.12
0.10	-2.14	4.11	2.06	-1.5	6	4.21	-2.78	0.15		-0.09	-4.07	-2.63	-1.98	-2.71	-1.10	0.03	-2.36
0.81	-3.26	2.86	1.90	-2.7	5	4.97	-0.98	0.11		-3.11	-3.11	-2.51	-1.73	-4.99	0.41	0.69	-1.90
-1.18	-4.24	1.77	2.06	-1.0	12	4.98	-0.07	-0.17		-0.67	-2.80	-4.17	-2.08	-5.50	-0.53	-0.45	-1.82
-1.50	-4.50	-0.22	1.95	-0.8	0	1.63	4.95	-0.19		-0.96	0.48	-5.85	-2.25	1.26	-0.35	0.43	-2.82
-4.07	-3.10	-2.72	1.75	-0.8	0	-0.58	4.54	-0.22		-0.95	0.32	-3.26	-1.25	4.14	0.77	-0.12	-1.57

Table S1: Nucleosome pseudo-charges and relative postions on the nucleosome surface at $C_S = 0.15$ M obtained with the DiSCO approach. 2

Parameter	Description	Value
Т	Temperature	293.15° K
C_S	Monovalent salt concentration (NaCl)	$0.15 \mathrm{M}$
l_0	Equilibrium DNA segment length	3.0 nm
L_p	Persistence length of linker DNA in monovalent salt	50 nm
h	Stretching rigidity of linker DNA	$100k_BT/l_o^2$
g	Bending rigidity of linker DNA	$L_p k_B T / l_o$
s	Torsional rigidity constant of linker DNA	$3.0 \times 10^{-12} \text{ erg.nm}$
$ heta_o$	Angular separation between linker segments at core	108°
$2w_0$	Width of wound DNA supercoil	3.6 nm
r_0	Radius of wound DNA supercoil	4.8 nm
σ_{tt}	Excluded vol. distance for tail/tail interactions	1.8 nm
σ_{tc}	Excluded vol. distance for tail/core interactions	1.8 nm
σ_{cc}	Excluded vol. distance for core/core interactions	1.2 nm
σ_{tl}	Excluded volume distance for tail/linker DNA interactions	2.7 nm
σ_{cl}	Excluded vol. distance for core/linker DNA interactions	2.4 nm
σ_{gLHc}	Excluded vol. distance for globular link. hist./core interactions	2.2 nm
σ_{gLH1}	Excluded vol. distance for globular link. hist./link.DNA interactions	3.4 nm
σ_{cLHc}	Excluded vol. distance for C-term. link. hist./core interactions	2.4 nm
σ_{cLH1}	Excluded vol. distance for C-term. link. hist./link.DNA interactions	3.6 nm
k_{ev}	Excluded vol. energy param for all components except for tail beads	$0.001 \ k_B T$
k_{evt}	Tail/tail excluded volume interaction energy parameter	$0.1 \ k_B T$
q_{gLH}	Charge on the globular linker histone bead	13.88e
q_{cLH}	Charge on the C-terminal linker histone bead	25.62e
σ_{LHLH}	Excluded volume distance for link.histone/link.histone interactions	2.0 nm

Table S2: Parameters employed in mesoscale modeling/simulation.

	Bond	k_b	Average	SD
Tail	i-j	(kcal/mol/AA)	[Å]	[Å]
N-ter H3	1-2	0.09	15.6	2.3
	2-3	0.06	15.0	3.0
	3-4	0.07	15.6	2.9
	4-5	0.07	16.1	2.6
	5-6	0.07	16.1	2.6
	6-7	0.07	15.1	2.9
	7-8	0.11	14.9	2.4
N-ter H4	1-2	0.10	14.1	2.6
	2-3	0.10	15.2	2.4
	3-4	0.06	14.8	2.8
	4-5	0.20	14.7	1.8
N-ter H2A	1-2	0.08	14.1	2.6
	2-3	0.09	15.3	2.5
	3-4	0.03	14.5	3.4
C-ter H2A	1-2	0.07	15.7	2.6
	2-3	0.07	13.7	2.6
N-ter H2B	1-2	0.08	14.7	3.1
	2-3	0.10	14.1	2.3
	3-4	0.08	16.2	2.4
	4-5	0.08	15.1	2.7

Table S3: Protein bead stretching parameters.

	Angle	ke	Average	SD
Tail	i-j	(kcal/mol/AA)	[Å]	[Å]
N-ter H3	1 - 2 - 3	1.1	108.6	28.8
	2 - 3 - 4	1.0	108.1	28.6
	3 - 4 - 5	1.7	111.3	25.4
	4 - 5 - 6	1.2	117.6	27.8
	5-6-7	1.2	110.4	29.3
	6-7-8	1.5	110.5	27.2
N-ter H4	1 - 2 - 3	1.0	103.2	25.4
	2 - 3 - 4	1.1	106.0	25.8
	3 - 4 - 5	0.5	103.6	35.5
N-ter H2A	1 - 2 - 3	1.1	108.5	29.0
	2 - 3 - 4	0.6	100.1	29.3
C-ter H2A	1 - 2 - 3	1.0	100.7	31.8
N-ter H2B	1 - 2 - 3	0.9	104.9	35.1
	2 - 3 - 4	0.6	103.9	28.4
	3 - 4 - 5	1.6	113.8	26.7

Table S4: Protein bond-angle parameters.

Figure S1: Initial configurations and their interaction patterns.

Figure S2: Convergence of different quantities for 24-core 182-bp (top half) and 218-bp (bottom half) oligonucleosome trajectories simulated with LH.

Figure S3: Internucleosome interaction matrix $I^\prime(i,j).$

Figure S4: Triplet, dihedral, and bending angles cartoons.

Figure S5: Space filling model for representative 48-core arrays (short NRL: 173 bp, medium NRL: 209 bp, and long NRL: 226 bp) at different salt concentrations. Nucleosomes, DNA linkers, and LH are colored as in Figure 2.

Figure S6: Description of the fiber axis calculation for 24-unit oligonucleosome. (a) Cyan - nucleosome cores, Red lines - connections between consecutive nucleosomes, Green line - fiber axis, as estimated by the least squares procedure; (b) Fiber axis decomposition into three separate curves for three vectors (x, y, and z); Blue dots - nucleosome centers, Green line - fiber axis, Red dots - separators between line segments of the fiber axis.

Figure S7: Geometry of the mesoscale oligonucleosome showing (a) assembly of oligonucleosome components into a chain, (b) entering/exiting linker DNA, and (c) individual coordinate systems for the linker DNA beads and nucleosome core, and Euler angle β depicting the linker DNA bending. For nucleosome core *i*, \mathbf{a}_i and \mathbf{b}_i lie in the nucleosome core plane, with \mathbf{a}_i pointing along the tangent at the attachment site of the entering DNA, and \mathbf{b}_i in the direction normal to this tangent. For linker DNA bead *i*, the vector \mathbf{a}_i points from the geometric center of *i* to either the center of the following DNA bead or to the attachment point in the nucleosome (if i + 1 is a core). The vector $\mathbf{a}_i^{\text{DNA}}$ points from the attachment point of the exiting linker DNA to the center of the following DNA linker bead. The vectors \mathbf{a}_i^+ and \mathbf{a}_i^- represent the local tangents on the nucleosome cores at the exiting and entering points of attachment, respectively.