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Computational approaches to RNA structure prediction,
analysis, and design
Christian Laing and Tamar Schlick
RNA molecules are important cellular components involved in

many fundamental biological processes. Understanding the

mechanisms behind their functions requires RNA tertiary

structure knowledge. Although modeling approaches for the

study of RNA structures and dynamics lag behind efforts in

protein folding, much progress has been achieved in the past

two years. Here, we review recent advances in RNA folding

algorithms, RNA tertiary motif discovery, applications of graph

theory approaches to RNA structure and function, and in silico

generation of RNA sequence pools for aptamer design.

Advances within each area can be combined to impact many

problems in RNA structure and function.
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Introduction
Two of the most astonishing biological discoveries of the

past decade have been the relatively small number of

human genes and the fact that most of the human genome

is transcribed and associated with regulatory RNAs. The

latter has led to a paradigm shift in our understanding of

biological regulation. Deciphering the functions of these

regulatory RNAs presents a challenge for the new decade,

with many biomedical and technological applications.

Complementing such functional interpretations are

efforts to characterize the structures of RNAs over many

functional classes spanning sizes from those associated

with micro RNAs to large ribosomal systems. The greater

structural diversity of RNAs compared to proteins —

roughly 11 backbone torsional degrees of freedom for

RNA building blocks compared to 2 for proteins — com-

bined with the complex possible packing arrangements of

RNA’s many secondary-structural elements — double-
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stranded helices and single-stranded loops, bulges, and

hairpins — poses a challenge to computation. Moreover,

the sensitivity of RNA structures to ions, solvent, metab-

olites, and other biomolecules has made RNA structure

determination at atomic resolution more difficult than for

proteins.

Yet, in recent years, the increasing recognition of RNA’s

prominence in gene control has led to impressive

advances, on both the experimental and the compu-

tational fronts, concerning RNA secondary and tertiary

structure determination and motif analysis; synthetic and

engineered RNA design; and applications of RNA to

bioengineering, medicine, and nanotechnology [1–3].

See Figure 1 for a perspective of the increasing structure

information for RNA as well as published papers in RNA

modeling. In this review, we summarize progress in the

past two years in the areas of computational approaches to

RNA tertiary structure prediction, analysis of RNA ter-

tiary motifs, graph theory approaches for RNA, and RNA

design efforts that attempt to improve upon experimental

in vitro selection for aptamer design. We also mention

studies relevant to RNA structural comparison, since the

notion of rmsd (root-mean-square-deviation) for RNA is

insufficient at this stage where predictions are not accu-

rate. For recent reviews on these topics, see [4,5��,6,7],

and for a general perspective on improvements in bio-

molecular modeling and simulation, see [8]. Note that

there are many other areas of advances on RNA bioinfor-

matics, for example secondary structure predictions [9],

not covered here.

RNA tertiary structure prediction
Compared to protein folding, the RNA folding problem is

at an early stage: current 3D RNA folding algorithms

require manual manipulation or are generally limited to

simple structures in terms of size and topology. However,

many groups have now been tackling this problem by a

variety of techniques as represented in programs like

NAST [10�], BARNACLE [11�], FARFAR [12��], and

others (see Figure 2). These methods differ in the input

data, prediction accuracy, and nucleotide representa-

tion — from one pseudo-atom per nucleotide to all-atom

detail. Our recent review [5��] examined the performance

of 3D structure prediction algorithms, namely iFoldRNA

[13], FARNA [14], NAST [10�], and MC-SYM [15], for an

RNA dataset of 43 structures of various lengths and

motifs. We found that most predictions have large rmsd

values from the crystal structure (e.g., rmsd >6 Å).

Although the prediction accuracy improves with added
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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Figure 1
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(left) Number of RNA structures deposited in the NDB nucleic acid database (http://ndbserver.rutgers.edu/) as of December 2010. Note different scales

used for protein (left) and RNA (right); (right) The number of scientific publications by year whose title contains the words ‘‘RNA folding’’, ‘‘RNA

structure prediction’’, ‘‘RNA modeling’’, or ‘‘modeling RNA structure’’ are colored in green; the words ‘‘RNA crystal’’ or ‘‘RNA NMR’’ are colored in

red; and the words ‘‘RNA dynamics’’, ‘‘RNA simulation’’, ‘‘ribosome dynamics’’, or ‘‘ribosome simulations’’ are colored in blue. The word search was

done using the ISI web of knowledge (www.isiknowledge.com/).
knowledge from the 2D structure and 3D contacts, the

lack of appropriate functions that favor compact RNA-

like structure and the failure to detect long-range contacts

remain clear challenges. Below we elaborate upon the

most recent approaches.

The nucleic acid simulation tool or NAST developed by

Jonikas et al. [10�] is a molecular dynamic simulation tool

consisting of a knowledge-based statistical potential func-

tion applied to a coarse-grained model with resolution of

one bead per nucleotide residue. NAST requires second-

ary structure information and, if available, accepts tertiary

contacts to direct the folding. NAST’s greatest strength is

that it allows modeling of large RNA molecules (e.g.,

160 nt), a limitation imposed by most programs. Overall,

when only secondary structure information is considered,

accurate prediction is limited to RNA structures with

simple topologies such as hairpins with less than 34 nt

(8 Å average rmsd) [5��]. However, when input infor-

mation from tertiary contacts is additionally provided,

NAST can dramatically improve prediction accuracy.

The web-based program iFoldRNA by the Dokholyan

group [13] predicts RNA structures using a coarse-grained

model of three beads per nucleotide through molecular

dynamics (MD) sampling (by the replica exchange, or

REMD method). iFoldRNA does not require secondary

structure information and can rapidly predict structures

for small RNAs (<50 nt). However, as the RNA size

increases, difficulties arise regarding long-range tertiary

contacts (23 Å average rmsd) [5��]. The Dokholyan and

Weeks groups recently improved their method by incor-

porating information regarding secondary and tertiary
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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contacts based on experimental SHAPE chemistry to

alleviate these limitations [16]. Prediction accuracy of

4 Å rmsd for a 75 nt tRNA-Asp was reported as the best

performance. This improvement is noteworthy, because a

typical ab initio prediction with iFoldRNA for a tRNA

gives an accuracy of about 21 Å rmsd [5��].

Other coarse-grained models such as recently presented

by Fresllsen et al. [11�] as an extension of their protein

approach are one way to address conformational sampling

limitations encountered in fragment assembly algorithms

such as FARNA [14] and MC-SYM [15], which generate

3D structure models from small-residue fragments.

Fresllsen et al. argue that the discrete nature of the

fragment assembly method leads to sampling bottle-

necks. Their alternative, a probabilistic model called

BARNACLE, to RNA conformational space represents

RNA conformational flexibility using circular analog to

Gaussian distributions (von Mises distributions) and

multi-dimensional sampling. The continuity of the local

conformational space allows for less biased sampling.

Using secondary structure information, BARNACLE

generates reasonable RNA-like structures (<10 Å rmsd)

for small RNA molecules (<50 nt). However, most RNA

structures with elaborate topologies such as junctions and

long-range contacts are longer than 50 nt and cannot be

predicted because of an increase in complexity of the

probabilistic model.

Another coarse-grained approach by the Gutell/Ren

groups [17�] takes a more standard mesoscale (5

pseudo-atoms per nt) modeling approach in which sim-

plified models are sampled by MD/simulated annealing
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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Figure 2
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Examples of recent RNA 3D folding computer programs. The different algorithms are organized by their input data (ab initio or sequence, secondary

structure, 3D contacts), as well as the level of model detail (from one bead coarse-grained models to all-atom approaches).
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with the guidance of atomistic, physics-based potential

functions, here with optimized non-bonded parameters.

Results for small RNAs (<30 nt) indicate great promise

(3.36 Å average rmsd). However, as in the case of BAR-

NACLE, this method is limited to RNA molecules with

relatively simple topologies.

Das et al. introduced a 2010 update to Rosetta’s Fragment

Assembly of RNAs (FARNA [14]) termed FARFAR that

adds a refinement phase for atomic-level interactions

[12��]. Relying on the framework found successful for

proteins using atomistic models and empirical potential

functions assembled from conformational preferences

represented in structural databases, FARFAR is only

applicable to small RNA (6–20 nt), and has variable

accuracy, from excellent, less than 1 Å rmsd, to more

than 10 Å (for 4-way junctions) when measured for cluster

centers; results improve by up to 5 Å when best clusters of

refined conformations are used instead for final assess-

ment. Standard sampling difficulties and convergence

failures reflect both algorithmic and force-field limita-

tions.

An alternative approach to automated programs is

ASSEMBLE, a manual-input program by Jossinet et al.
[18��] that, like RNA2D3D (Martinez et al. [19]), uses

secondary or tertiary structure information from homolo-

gous RNAs to build a first-order approximation RNA 3D

model. Using an intuitive graphical interface, ASSEM-

BLE allows the manual insertion of base pairs and 3D

motifs, as well as torsion angle modifications, rotations,

and translations of modular elements. ASSEMBLE per-

mits the input of electron density maps to improve the

RNA model. Although these user-input tools are practi-

cal, they rely on manual application of expert knowledge.

Unfortunately, there are only a few of these experts.

In general, for RNA sequences of medium to large sizes

(50–130 nt), even the best prediction methods lead to

large rmsd values (20 Å on average), considered poor for

protein predictions. Alternatives to rmsd measurements

for RNAs have thus been suggested for RNA structural

comparisons. Parisien et al. recently introduced an inter-

action network fidelity measure that combines rmsd with

counts of predicted base pairing and base-stacking rates

[20]. Similarly, Hajdin et al. [21] proposed assessing the

global fold of an RNA at the nucleotide resolution by

measuring a more ‘‘relative’’ rmsd value. For example, for

a de novo prediction of 100 nt RNA, the rmsd should be

within 25 Å of the accepted structure to reach a P-value of

P � 0.001 (the P-value is a measure of statistical signifi-

cance). Such alternative comparison approaches should

help distinguish successful models with RNA-like fea-

tures from less successful predictions.

Overall, the accuracy of each program varies from struc-

ture to structure. For RNA sequences of small size
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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(<20 nt), FARFAR can produce the best prediction

model. If structural data obtained from experimental

methods such as SHAPE chemistry is available, NAST

and iFoldRNA can dramatically improve their prediction

accuracy. For medium sized RNAs, MC-SYM can pro-

duce reasonable models, but accuracy is limited by the

difficulty of predicting long-range contacts. Because the

programs described above are recent, many improve-

ments can be anticipated in the near future.

Tertiary motif discovery
Structural and comparative studies have suggested that

RNA structure is largely modular composed of repetitive

building blocks or motifs. These patterns appear at the

primary, secondary, and tertiary structure levels. For

instance, the secondary structure motifs such as hairpins,

junctions, internal loops, and stems define hydrogen-

bonding patterns. At the tertiary level, RNA tertiary

(3D) motifs are recurrent structural elements subject to

multiple RNA–RNA interactions constraints as described

by Nasalean at el. [22]. RNA 3D motifs play an important

role in RNA folding and biochemical functions, and

determining 3D motifs provides a better understanding

of the principles of organization of complex RNA struc-

tures, as well as serves as foundation for applications to

synthetic biology and nanodesign [1,23,24].

The RNA–RNA interactions that define 3D motifs in-

clude base pairing, base-stacking, and base–backbone

interactions [25]. In terms of base pairing patterns, RNAs

possess remarkable versatility: base pair interactions can

be classified into 12 geometric families in terms of pairs of

interacting edges, which can be Watson and Crick,

Hoogsteen, Sugar, and glycoside bond orientation cis
and trans, as classified by Leontis et al. [26]. RNA base

pairs have been recently analyzed in detail by Stombaugh

et al. [27��] in terms of their isosteric properties, that is,

similar base pair interactions that can be substituted by

compensatory mutations (e.g., a GC base pair can be

substituted by an AU base pair), and a revised base pair

catalog is now available [27��]. Furthermore, base–back-

bone interactions are also common, and a recent classi-

fication model has been proposed by Zirbel et al. [28�]
based on phylogenetically conserved base–phosphate

interactions. This study also determined 10 family types

of base–phosphate interactions based on their hydrogen

bond interaction patterns. Recent works by the Leontis

[28�], the Schlick [29�], and James [30] groups have

identified new RNA backbone interaction motifs invol-

ving both the sugar ribose and the phosphate group with

the bases. These interactions have different functional

roles including RNA–protein recognition sites and stabil-

ization of the global RNA structure via helix-packing

interactions. Such combinations of RNA–RNA inter-

actions make up recognized 3D motifs, such as the A-

minor, ribose zipper, and loop-loop receptor interactions

(Figure 3a).
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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Figure 3
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(a) Annotated diagram of the TPP riboswitch (PDB: 2GDI) shows several correlated motifs working in a cooperative way to stabilize RNA’s 3D

conformation. These key motifs can be observed often in many other RNA structures. (b) TPP riboswitch folding as a function of sequence elongation

reveals: (1) either one or two conformational clusters of all suboptimal states for each sequence length. (2) At 145 nt, one cluster is apparent where the

folding funnel (base pair difference against free energy plotted for the ensemble for all predicted suboptimal structures) shows a classic simple folding

funnel landscape. (3) Near the full sequence length (190 nt), two clusters correspond to the two conformations. See [48�] for details.

www.sciencedirect.com Current Opinion in Structural Biology 2011, 21:1–13

http://dx.doi.org/10.1016/j.sbi.2011.03.015


6 Nucleic acids

COSTBI-886; NO. OF PAGES 13
A new way of thinking about RNA 3D motifs — as

elements of higher-order motifs (or supermotifs) — has

also emerged from analysis of solved RNA structures by

Xin et al. [31] and others [32] (Figure 3a). Often, 3D

motifs appear together, working cooperatively. For

instance, the newly adenosine wedge motif by Gagnon

and Steinberg [33] combines the along-groove packing,

A-minor, and hook-turn motifs. Similarly, cooperation

between A-minor and coaxial stacking motifs occurs in

most large RNAs, particularly in junctions as described by

the Westhof [34] and Schlick groups [35�].

The guiding and stabilizing roles that RNA motifs serve

[32] have also emerged from studies of RNA junction

topologies. Analyses by the Westhof [34] and Schlick

[35�] groups have described three and nine major families

for 3-way and 4-way junctions, respectively. Higher-order

junctions were also described as composed of these basic

architecture motifs [29�]. Helices within junctions tend to

arrange in highly ordered patterns (parallel and perpen-

dicular), and conformations are stabilized using common

3D motifs like coaxial stacking, loop-helix interaction,

and helix-packing interaction. Bailor et al. [36��] further

showed that secondary structure features such as loop size

encode topological constraints on the 3D helical orien-

tations of internal loops. This suggests that long-range

contacts serve to stabilize specific helical conformations

associated with the native structure within the topologi-

cally allowed ensemble.
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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As more structural information becomes available, a more

complete repertoire of RNA motifs will help us better

appreciate intricate interaction properties of RNA, which

in turn will translate to a better understanding of RNA

function.

Applications of graph theory to RNA
Graph theory is a field of mathematics widely used for

analyzing various types of relationships (or networks),

including chemical structures, genetic and biochemical

objects. Graph theory has also proven valuable for ana-

lyzing RNA secondary structures, as pioneered by

Waterman in 1978 and extended by many others, as

well as for analyzing tertiary structures of RNAs. Graph

representations of RNA can help address many funda-

mental biological questions concerning the organization,

classification, and design of RNA motifs.

To represent RNA secondary structures, graph objects

used include tree graphs, dual graphs, and secondary structure
graphs (see Figure 4); both dual and secondary structure

graphs can represent RNA motifs with pseudoknots. The

rules that define dual and tree graphs involve a translation

of each secondary structure element (stems, bulges, junc-

tions, and loops) into a vertex or an edge (Figure 4). The

edge/vertex specification is reversed for dual graphs with

respect to tree graphs. Secondary structure graphs define

instead each nucleotide as a vertex and the backbone and

base pairs as edges. In addition, a finer atom graph repres-
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015

tructure
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ower right), and secondary structure (upper right) graphs. In addition the
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entation for RNA tertiary structures is available, where

vertices represent atoms and edges represent covalent,

strong non-covalent bonds and angle constraints

(Figure 4). The common advantage exploited by these

approaches is that graph theory reduces the size of RNA

space enormously, from the sequence space size of 4N

where N is the number of nucleotides, to motif space,

which is vastly smaller and grows much slower with size,

as described, for example, by Gan et al. [37].

One such RNA topology resource developed by the

Schlick group, RAG (RNA-As-Graphs) (http://www.bio-

math.nyu.edu/rna/), is being used to classify/analyze

topological characteristics of existing RNAs [38,39]

and to design and predict novel RNA motifs

[39,40,41��,42]. Specifically, RAG and the associated

graph theory framework for RNA [37,43] have been used

to classify and catalog RNA motifs [38,39], estimate the

size of RNA’s structural/functional repertoire [39], detect

structural and functional similarity among existing RNAs

[44], identify RNA motifs of antibiotic-binding aptamers

(found synthetically) in genomes [45,46], analyze the

structural diversity of random pools used for in vitro
selection of RNAs [47], simulate aspects of the process

of in vitro selection in silico [40,41��,42], and analyze RNA

thermodynamic landscapes to better understand ribos-

witch mechanisms to ultimately enhance their design

[48�].

Cataloging based on graph theory enumeration suggests

that the RNA structure universe is dominated (more than

90%) by pseudoknots, in agreement with available data

by Kim et al. [39]. Cataloging has also led to RNA design

[39], by a build-up procedure combined with clustering

approaches. Specifically, statistical clustering techniques

are employed to separate graphs that are ‘‘RNA-like’’

from those that do not resemble natural RNAs on the

basis of quantitative graph descriptors. Such clustering,

though highly approximate, can suggest new RNA-like

motifs as design candidates. Candidate sequences that

fold onto such RNA-like motifs can then be predicted

using a build-up procedure that combines sequences for

motif subsegments known from RNAs in nature with an

algorithm for secondary prediction based on base pairing

thermodynamics [49]. Significantly, among 10 specific

designed new RNA motifs, five have since been discov-

ered (Kim et al., unpublished, see also Fig. 7.13 of [50]).

The large increase in solved RNAs in recent years has

also made it possible to compare theoretical predictions

of RNA-like and non-RNA-like motifs from 2004 to

current RNA databases. Overall, the larger percentage

of new RNAs from the theoretical RNA-like class (70%)

compared to percentage of new RNAs from the theor-

etically predicted non-RNA-like class (30%) shows

promise in using graph theory-based cataloging and

design of new RNA motifs based on a modular, build-

up strategy.
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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Graph theory tools are also natural for comparing RNA

structures to find existing RNA motifs within large RNAs

based on graph isomorphisms [44]. This idea was applied

to identify topological similarities among existing RNA

classes and to define motifs of RNA within larger RNA

topologies for major RNA classes (e.g., tRNA, tmRNA,

hepatitis delta virus RNA, 5S, 16S, 23S rRNAs).

Inspired by RAG, Koessler et al. [51] implemented a

predictive model to filter RNA-like structures from

non-RNA-like structures that result from multiple

solutions during RNA secondary structure prediction.

The method uses tree graphs and computes graph theor-

etic values as input for a neural network to determine the

best or most likely secondary structure candidates among

all possible outcomes. Another web-based tool termed

GraPPLE [52] applies secondary graph representations to

identify and classify non-coding RNAs from sequences

using graph properties that capture structural features of

functional RNAs.

Graph theory has been also useful for RNA structure

prediction. For instance, Gillespie et al. [53] considered

RNA backbones as polygonal curves on the 3D triangular

lattices to represent RNA structures and simulated the

folding of RNA structures, including pseudoknots, by

considering only the 3D conformations that can realize

pseudoknot structures in the 3D space given the base pair

restrictions.

In a different application, Fulle and Gohlke [54,55] use

the more detailed atom graph representation to analyze

the flexibility of RNA structures by constraint counting.

This is possible because sufficiently strong forces, which

are included in the graph representation by edges, reflect

rigidity and flexibility. Fulle and Gohlke applied con-

straint counting on this type of graph to reveal the static

properties of the ribosomal exit tunnel and its functional

role in cotranslational peptide folding [56�]. Their

method identifies large parts of the tunnel neighboring

regions as rigid, with clusters of flexible tunnel com-

ponents in the peptidyl transferase center, tunnel

entrance and exit region [56�]. Analyses of the rigidity

of RNA structures, at both the local and the global levels,

can therefore help interpret biological functions of RNAs.

Graph theory is expected to continue to be a useful tool

for representing, analyzing, and designing RNAs; such

applications also provide exciting research opportunities

in biology for mathematical scientists.

In silico generation of RNA sequence pools for
aptamer design
The versatility of RNA structures and functions has also

stimulated systematic efforts in the design of RNAs with

tailored functions for a variety of medical and techno-

logical applications. In vitro selection technology has
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015

Current Opinion in Structural Biology 2011, 21:1–13

http://www.biomath.nyu.edu/rna/
http://www.biomath.nyu.edu/rna/
http://dx.doi.org/10.1016/j.sbi.2011.03.015


8 Nucleic acids

COSTBI-886; NO. OF PAGES 13
been widely used for discovering new synthetic RNAs of

desired functions, such as high affinity and selectivity to

a range of targets, including antibiotics, proteins, and

even whole cells [57]. Essentially, this experimental

procedure termed SELEX (Systematic Evolution of

Ligands of Exponential Enrichment) [57,58] involves

generation and screening of large (around 1015)

sequence pools for binding and catalysis followed by

amplification by PCR. However, practice quickly

showed that RNA random pools are not structurally

diverse as might be expected; this was also demonstrated

computationally by generating random pools, ‘‘folding’’

them in 2D, and analyzing/grouping their folds by graph

motifs [47]. Indeed, it was shown that simple topologies

are favored, complex motifs are rare, and motif distri-

bution depends on the sequence length (e.g., a 60-nt

pool has a different distribution than a 100-nt pool).

Novel approaches have thus been developed to expand

the sampling of sequence space and thereby enhance

motif diversity and complexity.

Random pool generation and analysis lends itself natu-

rally to computation. For example, analytical frameworks

for estimating motif probabilities were described by the

Cedergren [59,60], and Schlick [45] groups. Motif scan-

ning programs like RNAMotif [61] have been crucial to

such efforts. The large size of the random pool, however,

has been a challenge until recently, where several in silico
approaches have begun to approach the experimental

pool size (e.g., order 1014 sequences of size 60–100 nt).

A simple mathematical approach using 4 � 4 ‘‘nucleotide

transition probability’’ matrices (see Figure 5a) to gen-

erate large pools of desired composition has been devel-

oped [40], along with a web server tool, RAGPOOLS

(http://rubin2.biomath.nyu.edu) [42] that helps design

structured pools for optimal yield of specific motifs. Such

matrices specify the mixing ratios of nucleotides in the

nucleotide vials (Figure 5a) as applied to an initial

sequence; different linear combinations of various

matrices can be used to generate different motif distri-

butions. That is, instead of uniform ratios in the nucleo-

tide vials, different ratios can be introduced via design

strategies (based on covariance mutations like AU to CG

or conversion of AU to CG base pairs) produce different

sequence pools (Figure 5b) [42], for example aimed at

specific motifs. Motif yield can be enhanced as desired

using more types of pools (basis matrices).

This matrix approach combined with supercomputing

resources (IBM Blue Gene) made it possible to generate,

screen, and filter, according to 2D structure similarity and

flanking sequence analyses, very large pools of nucleo-

tides (up to 1014) [41]. Such computational and theoretical

yields agree for simple RNA motifs. For real aptamer

targets, the in silico procedure overestimates the yields

found experimentally, as expected, because experimental
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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yields represent lower bounds and the screening does not

yet involve 3D structural aspects. This targeted design

approach has also shown promise for enhancing the

selection of ligase enzymes [41].

Luo et al. [62] recently reported a complementary,

directed evolution-like approach for junction appli-

cations: ‘‘random filtering’’ to enrich 5-way junctions

by repeatedly mutating junction motifs, and ‘‘genetic

filtering’’ to produce pools with given motif distribution

by a similar evolutionary approach. Similar in spirit is the

patterned libraries approach by Ruff et al. [63] where a

specific pattern like alternating purines and pyrimidines

is generated by inserting random bases between single-

stranded regions. It was shown to improve upon random

pools in terms of yield and binding affinities. However,

this approach requires many iterations of motif enrich-

ment. Chushak and Stone [64�] combine many of the

above ideas in a multi-step large-pool generation

approach for selection of RNA aptamers that uses 2D

pattern searching, 3D structure generation, and screening

for target binding using docking programs. They can thus

reduce an initial set of order 1013–1014 candidates by nine

orders of magnitude to propose RNA sequences which

can be used for RNA microarray applications for aptamer

design (e.g., [65]), an emerging alternative to in vitro
selection technology.

Other recent interesting mathematical works that analyze

aspects of in vitro selection include analyses of the

dependence of aptamer affinity on magnesium ions and

aptamer sequence patterns. The former study by Car-

others et al. [66] reveals that tighter-binding aptamers are

more robust, that is, less dependent on magnesium. The

latter study by the Knight group [67] demonstrated that

natural and artificial RNAs share similar sequence fea-

tures, including a purine preference and GC bias.

Current challenges in the in silico approach to aptamer

discovery and design remain efficient implementations

for very large pool sizes, 3D structural characterization of

the products to complement the 2D motif analysis, and

estimating binding/catalysis properties. The pool size

issue is straightforward to address with increasing com-

puting speed and the ready availability of coupled net-

works for parallel computations. Advances in the

prediction of tertiary RNA structure require more con-

ceptual breakthroughs, to address the global positioning

of RNA’s secondary structure elements. For the evalu-

ation of binding affinities and aptamer selectivity, stan-

dard molecular protocols for computing binding free

energies and further assessment by MD simulations have

been used, but their reliance on approximate tertiary

structures, free energy uncertainties, and limited

sampling in MD [68] are sources of inaccuracies. With

improvements, structural, flexibility and binding affi-

nities could be systematically measured, as demonstrated
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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Figure 5
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(a) In silico approach to pool design. RNA sequence pool generation can be simulated using the nucleotide transition probability matrix, which

specifies nucleotide mixtures in the nucleotide vials (or mutation rates for all nucleotide bases). The matrix composition can be defined to be a random

matrix, corresponding to experiments, or to mimic specific biological situations, as shown in (b). The resulting sequences can be ‘‘folded’’’ into 2D

structures using existing algorithms and analyzed further to screen and filter the candidates against a target motif. The non-random matrices shown in

(b) form a basis of 22 probability matrices that generate a wide range of RNA motifs in silico [40], as shown in (c), where motifs yields are organized by

RAG graph labels, and the yields of random matrices are shown in red.
by Anderson and Mecozzi [69] in an interesting appli-

cation that sought to define the minimal RNA length

required for selective binding to target aptamers by

repeated rounds of sequence adjustments, MD simu-

lations, and free energy calculations.

The ideas of directed evolution, sequence mutation, and

tailoring presented above lend naturally to more global

concepts of design involving the notion of energy land-

scapes. For proteins, statistical-mechanic frameworks
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu
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based on density of states, pioneered by Frauenfelder,

Wolynes, Dill, Onuchic, Thirumalai and others (e.g., [70–
72]), have been invaluable in interpreting various protein

kinetics and thermodynamic observations such as confor-

mational sub-states, folding mechanisms, and function.

Recently, Pitt and Ferre-D’Amare [73��] introduced the

notion of empirical RNA fitness landscapes by a combi-

nation of experiment and computation to analyze the

optimization of typical SELEX products in terms of
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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sequence/function relationships for small RNAs (up to

13 nt). Such genotype/phenotype mapping is of general

interest and practical importance.

Similar in spirit, though approached quite differently, are

other computational approaches for riboswitch design.

Riboswitches are RNAs which modulate gene expression

by ligand-induced conformational changes [74,75]. How-

ever, the way in which their intrinsic sequences dictate

such alternative folding pathways remains unclear. Shu

et al. [76] present a web tool that attempts to engineer

temperature-sensitive allosteric RNAs through analysis of

melting curves for designed sequences; the different

minima on the melting curve correspond to two riboswitch

conformations. Examining sequence length instead of

temperature, Quarta et al. [48�] approach riboswitch design

and analysis from a different point of view: identifying

intrinsic sequence windows that favor one conformation

over another as the enzyme elongates to full length,

thereby mimicking the natural transcriptional process.

They computed energy landscapes corresponding to sec-

ondary structures of RNA for the TPP riboswitch1 as a

function of sequence length from 120 to 190 nt (Figure 3b);

for each riboswitch length, the energy landscape is defined

by the spread of accessible conformations at a range of

energies: energy of that state vs. a distance measure be-

tween that conformation and all other conformations.

Intriguingly, it was found that, depending on the sequence

length, or time of transcription, the energy landscape may

be populated by one or two configurational clusters, repre-

senting the opposing biological functions (Figure 3b). This

bimodal landscape suggests two low-energy states separ-

ated by an energy barrier; the metabolite acts to guide the

RNA into one conformation by affecting the height of the

energy barrier [48�]. This thermodynamic switch, now

found common to other riboswitches (Quarta and Schlick,

unpublished), suggests a new avenue for riboswitch design

by combining, like the frameworks above, sequence

mutation/evolution with energy landscape analysis.

Clearly, the many approaches described above can be

used in concert with experimental technology to guide

the procedures in a more targeted fashion and focused

manner, to generate specific and/or complex RNA motifs.

Laserson et al. have also shown that many of these

designed synthetic RNAs have natural analog [45], and

this opens new avenues for discovery via genome analysis.

Conclusions
In recent years many computer algorithms have been

reported in RNA modeling. Methodologies range from
Please cite this article in press as: Laing C, Schlick T. Computational approaches to RNA structu

1 This riboswitch is regulated by the metabolite TPP (thiamine

pyrophosphate), so that the existence of this metabolite produces a

termination hairpin (a secondary-structure element) that blocks tran-

scription; without this metabolite, RNA polymerase can bind and

transcription proceeds (Fig. 3b).
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coarse-grained spatial models to finer all-atom simu-

lations, and the protocols can handle input data from

none to secondary and partial tertiary contacts. It is

encouraging that many of these advances have been

achieved with relatively simple (coarse-grained) models,

which combine energy or statistical potentials, fragment

assembly, and continuous conformational sampling tech-

niques.

Although all methods have strengths and weakness as

recently reviewed [5��], tertiary structures of small RNAs

(<20 nt) are better achieved with all-atom knowledge-

based approaches (e.g., FARFAR) while those of large

RNAs (>50 nt) are better approached using coarse grain-

ing approaches (e.g., MC-SYM, NAST). Still, further

developments and refinements of the existing models

are needed. Specifically, for larger RNAs (>50 nt), pro-

grams are limited in predicting long-range contacts and

helical arrangements. New strategies continue to emerge

as RNA becomes more attractive to researchers. Indeed,

the new computer game EteRNA (http://eterna.cmu.edu)

uses ideas similar to Foldit to attract participants world-

wide to develop new ways to design and fold RNA

molecules.

Structural knowledge from observed RNA native struc-

tures in the form of 3D motifs is further needed for both

automated and manual modeling approaches. In fact, the

increasing availability of high resolution large RNA struc-

tures has made possible the identification and classifi-

cation of RNA secondary and tertiary structure motifs, at

different levels of detail. In particular, recent evidence

supports unique combinations of 3D motifs that form

larger architectural units of RNA, such as the adenosine

wedge motif [33]. Such knowledge enhances RNA struc-

ture prediction, modeling, and design. Although we are

still far from having a complete motif library, and also far

from predicting the effect of 3D motifs in the long-range

contacts that stabilize RNA 3D structures, graph theory

approaches, as described here, can aid in the classification

and prediction of RNA motifs.

Indeed, RNA’s modularity has been natural for the appli-

cation of graph theory tools to estimate the size of RNA’s

structural/functional repertoire [39], detect structural and

functional similarity among existing RNAs [44], classify

and catalog RNA motifs [38,39], predict sequences that

map into new RNA motifs [39], identify RNA motifs of

antibiotic-binding aptamers (found synthetically) in gen-

omes [45,46], analyze the structural diversity of random

pools used for RNA in vitro selection [47], enhance in vitro
selection for aptamer design [41��], analyze RNA’s struc-

tural rigidity [54,55,56�], and predict RNA 3D structures

including pseudoknots [53].

In addition, new in silico approaches to aptamer discovery

and design, as described here, also offer novel ways for
re prediction, analysis, and design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.03.015
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efficient design. Because ultimate design depends on fine

details of the tertiary structures, such designs will

improve with better methods for tertiary structure algor-

ithms. The combination of graph theory, 3D motif

analysis, tertiary structure prediction, and general mod-

eling and simulation improvements [8], will continue to

advance RNA bioinformatics and RNA biology and

chemistry.
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