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COMMENTARY

A New Toolkit for Modeling RNA from a
Pseudo-Torsional Space

Commentary on “Discrete RNA libraries from
pseudo-torsional space” by Humphris-Narayanan and

Pyle (J. Mol. Biol. March 2012)
RNA's diverse cellular roles from catalysis and
molecular recognition to genetic regulation are
highly dependent on its tertiary structure (see recent
reviews in Refs. 1–3 and breakthrough papers in
Refs. 4–8). Fortunately, the number of known RNA
tertiary structures has greatly increased over the
past 20 years through experimental studies. The
emerging field of RNA computational biology has
capitalized well upon this growing information to
develop tools that model RNA tertiary structures
(see recent reviews in Refs. 9 and 10). In turn,
computational approaches have also contributed to
annotating and analyzing RNA's modular and
hierarchical features.11–14 For example, complex
RNA structures are abstracted through coarse-
grained representations, networks,15,16 beads,17,18

or two-dimensional graphs,19 and these have
allowed classification and cataloguing of the result-
ing RNA shapes in the form of databases or libraries.
Such cataloguing of RNA topologies has also led to
RNA design.19–23 In parallel, RNA structures have
been predicted by assembling fragments from the
coarse-grained libraries using programs such as
MC-Sym15,16 and NAST17,18 or by borrowing from
the fragment assembly/minimization protocol for
proteins as in the RNA program FARNA.24 In this
issue of the Journal of Molecular Biology, Humphris-
Narayanan and Pyle (“HP” for short) develop a
discrete RNA rotameric library to analyze, cata-
logue, and assemble structural features of RNA
without minimization or sampling.25

Specifically, HP represent RNA structures using a
virtual bond system that reduces the backbone's
seven torsion degrees to two pseudo-torsional
angles. Earlier work by Richardson, Pyle, and
coworkers provided a solid foundation for this
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Please cite this article as: Kim, N. & Schlick, T. A New Toolkit for Mo
doi:10.1016/j.jmb.2012.05.027
modeling approach: in a collaboration with the RNA
Ontology consortium,26 the Richardson group
developed the 8466 RNA rotameric data set for
seven backbone torsion angles27 and identified the
46 consensus clusters of RNA backbone
conformations26; Pyle's group focused on coarse-
grained modeling28 and analysis of each backbone
structure.29 In particular, Pyle et al. earlier intro-
duced the two pseudo-torsion angles (η–θ) defined
by pseudo-bonds formed by the carbon (C4′) and
phosphate (P) atoms to facilitate the classification of
the RNA backbone of each nucleotide28 (η: C4′i− 1-
Pi-C4′i-Pi+1, θ: Pi-C4′i-Pi+1-C4′i+1; see Fig.1 in the
HP work25 and Fig. 1 in this commentary). They
then analyzed the η–θ angle distributions in
Richardson's RNA backbone data set, an approach
mimicking Ramachandran plots for protein back-
bone description.29 Now, HP make the critical
connection between these torsion angle analyses
and the modeling of RNA structures: they identify
basis sets of nucleotide conformers or “fragments”
spanning the RNA pseudo-torsional space, and they
assemble these fragments to construct RNAs,
ranging from 2 to 174 nucleotides.
On its own, such a fragment assembly method

would require additional tools for model building
such as energy formulation and minimization.
However, the discrete RNA nucleotide library
based on a simplified pseudo-torsional representa-
tion of RNA backbone allows exhaustive sampling
of RNA backbone structures.25 As in a previous
study,29 nucleotides are classified into two groups
(C3′-endo or C2′-endo sugar pucker), and two η–θ
plots are generated for each group (see Fig. 2 in the
HP work25). The further binning of these plots into
six groups over regular angular intervals from 5° to
d.
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Fig. 1. Pseudo-torsional space of 1434 nucleotides found in the 25 RNA solved structures analyzed in our recent review
(PDB entries: 1MFQ, 1LNG, 1MMS, 1MJI, 1DK1, 1F1T, 1KXK, 1I6U, 1MZP, 1OOA, 1RLG, 1S03, 1SJ4, 1XJR, 1U63, 1ZHO,
2GDI, 2GIS, 2HW8, 2IPY, 2OIU, 2OZB, 2PXB, 3D2G, and 3E5C). In the η–θ plot shown at the center, η and θ are the torsion
angles for each nucleotide backbone, formed by C4i− 1-Pi-C4i-Pi+1 and Pi-C4i-Pi+1-C4i+1, respectively (see molecular
models). The red and blue colors in the (η, θ) plot indicate C3′-endo and C2′-endo sugar puckers, respectively. Helical
regions are located near the center of the plot. For non-helical regions, these angles are distributed diversely (see Fig. 2).

2 A New Tool for RNA Backbone Modeling
60° (Fig. 2 in the HP work25) defines nucleotide
conformer sets (or RNA filtered fragments). As a
result, six libraries of filtered RNA fragments (for 5°,
10°, 15°, 20°, 30°, and 60° resolution) are created. For
each library, structural analysis shows that only a
fraction of the possible regions are occupied. For
example, for 60° libraries, there are 72 bins, or
Please cite this article as: Kim, N. & Schlick, T. A New Toolkit for Mo
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6×6=36 fragments for each set of C3′-endo or C2′-
endo conformers; of these, 67 are occupied. For other
refinements (30°, 20°, 15°, 10°, and 5°), the corre-
sponding occupied bins to total possible bins (SB/
TB) are 160/228, 242/648, 296/1152, 402/2592, and
577/10368, respectively. Thus, only a limited num-
ber of backbone motifs have been thus far observed,
deling RNA from a Pseudo-Torsional Space, J. Mol. Biol. (2012),
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Fig. 2. Pseudo-torsional angles for two RNAs: (a) PDB: 1OOA (NF-κB aptamer) and (B) PDB: 3E5C (SAM riboswitch)
using the 5°-binned HP library. On the left, η–θ plots with three- and two-dimensional sketches of each RNA are shown.
The red, blue, green, and magenta colors represent helices, hairpins, internal loops, and junctions, respectively. Most
nucleotides have C3′-endo sugar puckers. Only four nucleotides (residues 29, 31, 36, and 37) in 3E5C have C2′-endo sugar
puckers, and these are indicated as “C2′”. On the right, η (square) and θ (diamond) values for each nucleotide in the 5°
library are shown along the residue numbers.

3A New Tool for RNA Backbone Modeling
and this binning allows efficient exhaustive enume-
ration and sampling of RNA backbone structures.
Using these six pseudo-torsional libraries for each

nucleotide, the total number of theoretically possible
conformations for an N-polynucleotide RNA is SB

N,
which can be enumerated (e.g., 67N or 402N for 60°
or 10° bin libraries, respectively). However, some of
these theoretical structures for polynucleotides are
not physically possible due to steric clashes and can
be further eliminated. HP show that the resulting
nucleotide sets cover most of the observed RNA
backbone structures: the finer libraries (B=20°, 15°,
10°, and 5°) represent 75–80% of the 8466 backbone
conformers developed by the Richardson group26

within 0.5 Å backbone RMSD for a single nucleotide
(see Fig. 3 in the HP work25).
A second aspect of the HP work is application of

this analysis to RNAs of interest, namely, assem-
bling library conformers to build target RNA
structures. These reconstructions based on RMSD
comparisons are reported to succeed up to a level of
1.5 Å backbone RMSD for RNA molecules. That
several hundred fragments may serve as a basis for
building models of RNA is significant.
Figure 1 shows the η–θ distribution of 25

representative solved RNAs with diverse structural
features and sequence lengths used in our recent
Please cite this article as: Kim, N. & Schlick, T. A New Toolkit for Mo
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review.9 The figure indicates that each RNA motif
can be distinguished by specific pseudo-torsional
angles: in helices, these angles correspond to ~180°/
180° of the η/θ grid, while in non-helical regions, the
η/θ values are distributed diversely. Typical values
for different secondary-structure elements can be
gleaned from Fig. 2. Figure 2 shows η/θ values for
two RNAs [Protein Data Bank (PDB) entries: 1OOA
and 3E5C] using the 5° library (the other libraries
have similar values). Residues in non-helical re-
gions, such as hairpins (residues 15 and 16 in 1OOA
and residues 20 and 43 in 3E5C) and internal loops
(residues 29, 30, and 31 in 3E5C), display extreme
(high or low) values, far from ~180°, which
corresponds to double-stranded regions.
These correspondences between secondary struc-

tures and angular values suggest how fragment
assembly may be accomplished. For example, PDB
entry 1OOA, which has 29 nucleotides and an
internal loop, requires at least 7 fragments in the 60°
library or 24 fragments in the 5° library to be
assembled. PDB entry 3E5C with 53 nucleotides
corresponds to 11 fragments in the 60° library or 36
fragments in the 5° library. However, RNA models
directly assembled using these fragments are likely
to differ from the native structures due to both the
discrete nature of the fragment library and the
deling RNA from a Pseudo-Torsional Space, J. Mol. Biol. (2012),
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4 A New Tool for RNA Backbone Modeling
flexibility possible between secondary-structure re-
gions. Thus, for general applications to build target
RNA structures using backbone fragments in the
discrete libraries, a careful fragment selection
procedure and/or optimization components may
be required.
The present RNA filtered backbone fragment

library presents a valuable tool for use in RNA
modeling. It also offers a good starting point for
RNA structure prediction and design protocols that
employ conformational minimization since an initial
structure can be assembled using backbone frag-
ments with targeted torsion angles. The RNA
structures assembled using the filtered backbone
fragment library also have the additional advantage
that they need not to be translated back into all-atom
structures, unlike those generated via other more
abstract coarse-grained models.
As demonstrated by advances in the field of

protein modeling that occurred after the introduc-
tion of the expanding rotamer libraries,30,31 such
RNA pseudo-torsional fragment libraries are
expected to offer a promising avenue for exploring
the diverse structural repertoire of the RNA back-
bone space. The new tool from the Pyle lab is a
welcome addition to the field of RNA computational
biology. Together with other innovative approaches
to modeling, predicting, and designing RNAs, RNA
enthusiasts are quickly catching up with analogous
protein efforts.
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