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Abstract
While the genetic information is contained in double helical DNA, gene expression is a complex
multilevel process that involves various functional units, fromnucleosomes to fully formed chromatin
fibers accompanied by a host of various chromatin binding enzymes. The chromatinfiber is a polymer
composed of histone protein complexes uponwhichDNAwraps, like yarn uponmany spools. The
nature of chromatin structure has been an open question since the beginning ofmodernmolecular
biology.Many experiments have shown that the chromatin fiber is a highly dynamic entity with
pronounced structural diversity that includes properties of idealized zig-zag and solenoidmodels, as
well as othermotifs. This diversity can produce a high packing ratio and thus inhibit access to a
majority of thewoundDNA.Despitemuch research, chromatin’s dynamic structure has not yet been
fully described. Long stretches of chromatinfibers exhibit puzzling dynamic behavior that requires
interpretation in the light of gene expression patterns in various tissue and organisms. The properties
of chromatinfiber can be investigatedwith experimental techniques, like in vitro biochemistry, in vivo
imagining, and high-throughput chromosome capture technology. Those techniques provide useful
insights into thefiber’s structure and dynamics, but they are limited in resolution and scope, especially
regarding compactfibers and chromosomes in the cellularmilieu. Complementary but specialized
modeling techniques are needed to handle largefloppy polymers such as the chromatinfiber. In this
review, we discuss current approaches in the chromatin structurefieldwith an emphasis onmodeling,
such asmolecular dynamics and coarse-grained computational approaches. Combinations of these
computational techniques complement experiments and addressmany relevant biological problems,
as wewill illustrate with special focus on epigeneticmodulation of chromatin structure.

Introduction

Celebrated as one of the highest achievements in
science, the first mapping of the human genome in the
dawn of the 21st century [1, 2], raised fundamental
questions that may take a whole century to answer
satisfactorily. The human genome, and genomes of all
other higher organisms, contain much less genes than
expected, but the amount of genes expressed in
majority of tissues is higher than anticipated [3].
Moreover, simpler organisms can have comparable or
even higher number of genes than human. These
findings suggest that the diversity of living species
stems not only from the multitude of genes, but also
from many ways of their expression [3]. Although
short segments of RNA can have enzymatic roles, they

are not sufficient to account for the variety of cell types
and cell signaling processes. Chromatin, the fiber that
stores the genomic material in eukaryotes, holds one
of the keys to the connection between the limited
number of genes and the complex nature of higher
organisms. Chromatin’s primary role, to compress
2 m of total genomic DNA in humans into a micro-
meter sized cell nucleus, is accompanied by a more
active role, namely the control of gene expression.

The chromatin fiber is made of double helical
DNA wrapped around protein-octamer globules.
Nucleosomes, chromatin’s building blocks, are built
of about 147 base pairs of DNA wrapped around
highly conserved, four histone proteins (H2A, H2B,
H3 and H4) [4], with the addition of the dynamically
bound linker histone (LH) H1/H5. The interplay
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between positively charged tails protruding from the
histone cores with DNA and neighboring nucleosome
particles and various chromatin binding factors con-
trols the level of chromatin compaction [5, 6], from
accessible double stranded DNA to fully formed chro-
mosomes. That level may determine the type of cell, its
status, and its future. Modern day genomics coupled
with the next generation sequencing [7–9] reveals that
the perturbation of the gene expression patterns can
disrupt cell-signaling processes and affect human
health [10, 11]. High throughput genome studies
aimed at deciphering the spatial connectivity of chro-
mosomal genomic regions [12] are suggesting that the
structural diversity of chromosomes is related to gene
expression patterns [13] and that genes and corresp-
onding regulatory elements can be, sequentially and
spatially, far apart in the genome [13, 14]. Therefore,
deciphering chromatin structure and dynamics is of
the crucial importance for understanding gene expres-
sion control in various organisms and tissues.

In this paper, we describe challenges associated
with chromatin structure and the histone code, and
then outline modeling approaches to study chromatin
structure, dynamics, and the effect of epigenetic mod-
ifications on chromatin structure. We end by advocat-
ing code/resource sharing approaches to accelerate
both experimental and modeling research in this area
and to helpmake the necessary links between them.

Chromatin structure and the histone code

The internal organization of chromosomes and the
corresponding structure of the chromatin fiber are still
open questions [15, 16]. The internal organization of
the 30 nm fiber, often observed in vitro via various
optical techniques, was for a long time a holy grail of
structural biology [17]. Two theoretical models were
developed to address the 30 nm organization, one-
start solenoid with bent DNA linkers [18, 19] and two-
start zig-zag with straight linkers [20–22]. Zig-zag
fibers are often observed under idealized experimental
conditions [23–27], withmild ionic environments that
discourage linker bending. Multiple experiments and
simulations showed that the chromatinfiber is a highly
dynamic entity with a very pronounced structural
diversity sharing properties of both theoretical models
[15, 16, 28, 29]. For example, cryo-electron micro-
scopy and synchrotron x-ray scattering experiments
observed a fractal-like organization of chromosome in
human mitotic HeLa cells, without prominent 30 nm
fiber like structures [30]. The absence of 30 nm motif
was also demonstrated in recent cross-linking experi-
ments of HeLa cells in combination with modeling
that revealed zigzag motifs associated with hierarchi-
cally looped chromatin fiber in interphase and meta-
phase chromatin [31]. Real-world fibers interact with
various enzymatic particles that disrupt the simple
two-start nucleosome ordering. They do not fold into

identically ordered structures in every cell because the
entropic cost of such a folding process would be
enormous [32]. Increased ion concentrations screen
electrostatic repulsion between positively charged
DNAfibers and allow their bending [28]. The naturally
occurring variability of DNA linkers connecting
successive nucleosome cores introduces a diversity in
the fiber structure [28, 33, 34]. The H1/H5 LH
dynamically binds to the nucleosome between two
DNA strands (entering and exiting), draws them
together, and establishes the nucleosome stem.

Prominent sources of fiber diversity are post-
translational modifications of histones and histone
tails [35–39]. Histone tails are typical targets for mod-
ification because they have prominent roles in inter-
and intra-nucleosomal interactions and interactions
with DNA linkers [28, 35, 39–41]. Modifications of
histone core and tails also influence the stability and
dynamics of nucleosomes [36, 38, 42–46], although
early experiments did not observe a prominent role of
tails in nucleosome stabilization [47, 48]. Therefore,
histone modifications either induce partial unfolding
of the chromatin fiber (euchromatin) or stabilize a
tightly lockedfiber (heterochromatin).

Enzymes introducing histone modifications are
usually very selective [49]. They act upon a specific
residue or a small group of selected residues. The three
major covalent histone tail modifications are acetyla-
tion, phosphorylation, and methylation, see figure 1.
These chemical changes reduce the tails charges and
modify tails dynamics and thus influence their interac-
tions with neighboring nucleosomes andDNA linkers.
Other notable modifications with similar influences
are ubiquitylation, sumoylation, ADP ribosylation,
histone tail clipping, histone proline isomerization
andβ-N-acetylglucosaminemodification [5].

The histone modifications have been a research
topic for many years, but their importance came to
prominence with the realization that the DNA con-
tains much less genes than expected, and that their
expression strongly depends on those heritable [49],
albeit reversible modifications. Seemingly simple,
these chemical changes produce perplexing effects,
alone or in combination with other factors [5]. Acet-
ylation neutralizes the positive charge of lysine and in
this manner weakens interactions between positively
charged histones and negatively charged DNA and
exposes DNA to transcription mechanisms [49–55]. It
is also involved in gene silencing [56], and DNA
damage response [57–59]. Acetylation affects numer-
ous lysines on all tails (see table 1), and the high num-
ber of possible sites where it may occur is an indication
of the existence of hyper-acetylated regions that are
devoid of tail charges and thus transcriptionally active
[60, 61]. Phosphorylation adds a negative charge to
serines, threonines and tyrosines, mostly in the his-
tone N-terminal tails, but its mechanism of action is
not based on electrostatic screening only. It is a highly
dynamic, site-specific modification active in mitosis,
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meiosis, transcription activation, cell death, DNA
repair, DNA replication and recombination [62–67]
(see table 1). Phosphorylation is a strong signaling fac-
tor dependent on the cell cycle, and its dysregulation is
highly correlated with cancer [66, 68]. Methylation is a
physically small modification that does not alter the
charge of a histone protein but can have a profound
effect as a signaling factor for various cell processes. It
modifies all histone molecules, including LHs. Methy-
lation is associated with transcriptional activation,
repression, silencing, euchromatin formation, and
antagonistic or supportive cross-talks with othermod-
ifications as well as with DNA methylations [69–73]
(see table 1). Ubiquitylation produces the largest phy-
sical modification of all reactions mentioned here
because it attaches ubiquitin, a 76-amino acid poly-
peptide, to the lysine’s Ɛ-amino group. Ubiquitin is a
cell-signaling factor mostly involved in the degrada-
tion of proteins [74]. Histone ubiquitylation induces a
change of the overall nucleosome conformation and in
turn disrupts intra and inter nucleosomal interactions,
as well as interactions with DNA or with other chro-
matin-binding factors. It has a role in gene silencing,
meiosis, transcriptional activation and in euchromatin
formation [75–77]. The same enzymes that attach ubi-
quitin are involved in sumoylation [78], a reaction that
attaches small, an ubiquitin-likemodifiermolecules to
histone lysines. This chemical change antagonizes
acetylations and ubiquitylations that address the same
lysine side chains [79, 80], and it is primarily associated
with the transcriptional repression, though its direct
physical effects are not yet known [5, 77, 79, 81]. Bioti-
nylation is a modification that covalently attaches the

vitamin biotin to a protein. Biotin is a small molecule,
when compared to ubiquitin, but its binding to his-
tone proteins influences gene expression, cell pro-
liferation [82], transcription repression and histone
dimerization [83], as well as the cell’s response toDNA
damage [84, 85]. Biotinylation may affect other his-
tone modifications via crosstalk [82]. Gene expression
can be also regulated though histone tail clipping, a
procedure that removes residues from a histone tail.
The procedure is present in many systems, from yeast
tomammals [86–88].

The effects of histone modifications are sequence
and context dependent. Besides directly affecting
chromatin structure, they often attract factors that
induce or remove modifications on neighboring resi-
dues, or they impair access to gene promoting or sup-
pressing factors [72, 89]. Biochemical and
physiological effects caused by histone modifications
cannot be interpreted solely through their linear com-
bination and could be perceived as a type of code that
controls gene expression [90]. This histone code is,
therefore, complementary to the four-letter genetic
code that holds information for protein synthesis
[90–92].

Chromatinmodeling

The roles of histone components and histone mod-
ifications in chromatin structure formation can be
addressed using various biophysical, biochemical,
genetic or epigenomic experimental techniques.
These techniques offer insights into the structure, and
more importantly dynamics of chromatin fibers

Figure 1.Positions of targets formajor covalent histonemodifications (pdb ID 1KX5). The histone octamer is white andDNA is pink
and cyan. Acetylations are colored red, phosphorylation blue, ubiquitylations, sumoylations and biotinylations green, and
methylations yellow. The linker histone (PDB IDs 1HST and 1C7Y) is gray.
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Table 1. List ofmajor histone covalentmodification (A—acetylation, P—phosphorylation, U—ubiquitylation, S—sumoylation,M—
methylation) listed by the histone and sequence position. The number of histonemodifying factors (9th column) represents the relative
importance a residue haswithin a histone code.

Tail Residue A P U S B M
#modify-
ing factors Description

Lys26 x 1 Transcription silencing [72, 89]

Ser27 x 1 Transcription silencing, chromatin decon-
densation [72, 89]

Lys48 x 1 OxidativeDNAdamage [38, 93, 94]

Arg54 x 1 Chromatin compaction, transcription [95]

H1 Lys65 x x 2 OxidativeDNAdamage [94, 96]

Lys66 x 1 OxidativeDNAdamage [94, 96]

Tyr73 x 1 Unknown [96]

Lys92 x x 2 OxidativeDNAdamage [93, 96]

Lys99 x 1 Unknown [93]

Ser1 x 1+ Mitosis, chromatin assembly, transcription
repression [97, 98]

Arg3 x 4 Transcription activation, transcription
repression [73]

Lys4 (S. cerevisiae) x 1 Transcription activation [99]

Lys5 (mammals, S.
cerevisiae)

x 3 Transcription activation, unknown
[50, 100, 101]

Lys7 (S. cerevisiae) x 1 Transcription activation [99, 102]

Lys9 x 1 Transcription repression [83]

Lys13 x 1 Transcription repression [83]

Lys36 x 1 Unknown [96, 103]

Arg42 x 1 Unknown [38, 96]

Lys74 x 1 Unknown [104]

Lys75 x 1 Unknown [104]

Arg77 x 1 Unknown [104]

H2A Arg88 x 1 Unknown [96]

Lys95 x 1 Unknown [104]

Gln105 x 1 Transcription [105]

Lys119 (mammals) x 1 Gene silencing [75]

Thr119 (D.melanogaster) x 1 Mitosis [106]

Thr120 (mammals) x 2 Mitosis, transcription repression [107, 108]

Ser122 (S. cerevisiae) x 1 DNA repair [64]

Lys125 x 1 Histone dimerization [83]

Lys126 (S. cerevisiae) x 1 Transcription repression [81]

Lys127 x 1 Histone dimerization [83]

Lys129 x 1 Histone dimerization [83]
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Table 1. (Continued.)

Tail Residue A P U S B M
#modify-
ing factors Description

Ser129 (S. cerevisiae) x 2 DNA repair [109, 110]

Ser139 (mammalian
H2A.X)

x 3 DNA repair [111–113]

Thr142 (mammalian
H2A.X)

x 1 Apoptosis, DNA repair [114]

Lys5 x 2 Transcription activation [50, 115]

Lys6 (S. cerevisiae) x 1 Transcription repression [81]

Lys7 (S. cerevisiae) x 1 Transcription repression [81]

Ser10 (S. cerevisiae) x 1 Apoptosis [116]

Lys11 (S. cerevisiae) x 1 Transcription activation [102]

Lys12 (mammals) x 2 Transcription activation [50, 115]

Ser14 (vertebrates) x 1+ Apoptosis, DNA repair [63, 117]

Lys15 (mammals) x 2 Transcription activation [50, 115]

Lys16 (mammals) x 2 Transcription activation [102]

H2B Lys20 x x 2 Transcription activation [50]

Lys23 x Unknown [96]

Ser33 (D.melanogaster) x 1 Transcription activation

Ser36 x 1 Transcription activation [118]

Lys43 x 1 Unknown [103]

Lys57 x 1 Unknown [96]

Arg79 x 1 Unknown [96]

Lys85 x 1 Unknown [96]

Arg99 x 1 Unknown [96]

Lys120 (mammals) x 1 Meiosis, development [76]

Lys123 (S. cerevisiae) x 1 Transcription activation, elongation,
euchromatin [77]

Arg2 x 2 Transcription repression [73]

Thr3 x 2 Mitosis [119]

Lys4 (S. cerevisiae) x x x 8 Transcription activation (tri-me), gene
expression, cell proliferation, permissive
euchromatin (di-me) [82, 99, 120–124]

Thr6 x 1 Unknown [125]

Arg8 x 3 Transcription activation, transcription
repression [126, 127]

Lys9 x x x 10 Transcription activation, transcription
repression (tri-me), genomic imprinting,
histone deposition, gene expression, cell
proliferation [51, 70, 71, 82, 128–131]

Ser10 x 5 Transcription activation,mitosis,meiosis,
immediate-early gene activation, DNA
methylation [62, 132–135]
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Table 1. (Continued.)

Tail Residue A P U S B M
#modify-
ing factors Description

Thr11 (mammals) x 2 Mitosis [136]

Lys14(12) x 12 Transcription activation (elongation), DNA
repair, transcription control, histone
deposition, RNApolymerase II transcrip-
tion, cell growth [50, 51, 56–
58, 99, 100, 120, 128, 129, 137–139]

Arg17 x 1 Transcription activation [140]

Lys18 x x 3 Transcription activation, histone deposi-
tion, gene expression, cell proliferation
[50, 51, 82, 140]

H3 Lys23 x 3 Transcription activation, histone deposi-
tion,DNA repair [50–52, 128, 140]

Arg26 x 1 Transcription activation [73]

Lys27 x x 3 Transcription silencing, X inactivation
[130, 141]

Ser28 (mammals) x 3 Mitosis, immediate-early gene activation
[133, 142, 143]

Lys36 x x 1 Transcription activation (elongation)
[144, 145]

Tyr41 x 1 Transcription activation [67]

Arg42 x 1 Transcription activation [146]

Thr45 x 1 Apoptosis [147]

Lys56 x x 1 Transcription activation, DNA repair, oxi-
dativeDNAdamage [53, 59, 96, 148, 149]

Lys57 x 1 Unknown [150]

Arg63 x 1 Unknown [96]

Lys64 x x 2 Transcription [96, 104, 151]

Lys79 x 1 Euchromatin, transcription activation
(elongation), checkpoint response
[152–154]

Thr80 x 1 Mitosis [150]

Thr118 x 1 Transcription, DNA repair [103, 155, 156]

Lys122 x x 2 Transcription, DNA repair [94, 96, 157]

Arg128 x 1 Unknown [96]

Ser1 x 2+ Mitosis, chromatin assembly, DNA
repair [65, 97]

Arg3 x 5 Transcription activation, transcription
repression [73, 126, 158]

Lys5 x 7 Transcription activation, histone deposi-
tion,DNA repair
[50, 57, 58, 99, 100, 115, 120, 159]

Lys8 x x 9 Transcription activation (elongation), DNA
repair
[50, 57, 58, 84, 85, 99, 100, 115, 137, 160]
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[22–27, 168, 169], but they cannot fully describe the
chromatin structural patterns. The difficulties stem
from the tightly packed and still not fully accessible
chromatin fiber interior and from the small size of
histone modifications. Furthermore, laboratory pre-
parations often put analyzed specimens in conditions
not present in vivo. For example, in vitro fibers have
equally spaced nucleosomes and usually lack histone
modifications [168, 169]. In principle, systematic
modeling can help address the influence of histone
modifications on chromatin structure. This is a
challenging task because the effects of histone mod-
ifications cover various spatial and temporal scales,
which means that different levels of chromatin fiber
organization have to be described using different
theoretical and computational methods [6]. The first,
basic level modeling has to cover is the influence of
histone modifications on histone tails themselves. The
second level is the modeling of the structure and
behavior of nucleosome cores with and without
modifications. Next, the behavior and structure of
oligonucleosomes, with and without histone modifi-
cations, has to be accurately determined. The final
level is the modeling of longer stretches of chromatin
fiber and the modeling of whole chromosomes. All
those four levels of modeling have to apply different
tools and strategies in a selective manner, but they

have to be consistent in the interpretation of fiber
behavior.

Nucleosome and oligonucleosome
modeling

Molecular dynamics uses the atom level interpretation
of molecules to model their behavior in natural
environments (for a detailed review see [170]). Its
numerical complexity makes MD simulations of
biomolecules applicable to systems with a limited
number of atoms, usually less than ten million [171],
including solvent and salt atoms [170]. The maximum
time span MD can cover is in the range of micro-
seconds [171–173], or milliseconds on special archi-
tectures (Anton [174]). The full atom interpretation of
a dinucleosome in explicit solvent requires 800 000
atoms [39], which means that besides simulations
of individual tails only a limited number of nucleo-
some related simulations have been conducted so
far (see [175] for details). Although limited in
scope, those simulations provide important insights
into the behavior of the nucleosome and its
components.

Many methods have been developed in attempt to
improve the efficiency of molecular dynamics (MDs)

Table 1. (Continued.)

Tail Residue A P U S B M
#modify-
ing factors Description

Lys12 x x 7 Transcription activation (elongation), DNA
repair, histone deposition, telomeric
silencing, euchromatin
[50, 57, 58, 84, 85, 99, 100, 120, 159, 161]

H4 Lys16 x 7 Transcription activation, transcription
silencing, DNA repair [39, 56–
58, 99, 100, 102, 115, 160, 162]

Lys20 x 5 Transcription activation, transcription
silencing (mono-me), heterochromatin
(tri-me), checkpoint response [163–165]

Arg35 x Unknown [96]

Ser47 x Nucleosome assembly [166]

Arg55 x Unknown [96]

Lys59 x 1+ Transcription silencing, oxidativeDNA
damage [96, 167]

Arg67 x 1 Unknown [96]

Lys77 x x 2 Unknown [96]

Lys79 x x 2 OxidativeDNAdamage [94, 96]

Tyr88 x 1 Unknown [96]

Lys91 (S. cerevisiae) x . 2 Chromatin assembly [96, 168]

Arg92 x 1 Unknown [96, 104]
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simulations [176–184]. The most commonly method
used to reduce the numerical cost of MD is implicit
solvent. This approach reduces the number of simu-
lated atoms by representing solvent as a continuous
medium, following the assumption that polar or
charged molecules stay in water [185, 186]. This
method is used to explore the protein folding and
dynamic behavior of biological polymers, DNA, RNA
and proteins. Its applicability can be limited in a tightly
packed environment of the chromatin fiber interior,
in which individual water molecules may affect the
behavior of small peptides such as histone tails.

Many other methods have been developed, but
their application to complex systems like the chroma-
tinfiber remains to be shown as advantageous.

Coarse-graining interprets biological molecules
less accurately thanMD, but allows simulations of lar-
ger systems and makes possible more efficient sam-
pling of the configurational space. Early coarse-
grained models, although simple, were able to inter-
pret basic structural patterns of the chromatin fiber
and approach experimental findings [187–191]. Those
models usually represented DNA as a worm-like-
chain and nucleosomes as simple, rigid particles that
interact via simple potentials. Advanced models use
more detailed representations of nucleosomes and
apply explicit tails.

Woodcock et al applied a model of the oligonu-
cleosome fiber, based on a simple representation of
rotatable nucleosome core particle (NCP) and vari-
able-length DNA linkers with linker entry-exit angles,
to interpret EM chromatin images [187]. A similar
early coarse-grained model by Katritch, Bustamante
and Olson was able to reproduce force-extension
curves of real chromatin pulling experiments [192].
Later on, Wedemann and Langowski modeled NCPs
as oblate ellipsoids in an elastic fiber [189]. Their
Monte Carlo simulations of 100-NCP chains with
elastic and electrostatic interactions reproduced
experimental properties of 30 nm fibers with medium
DNA linker lengths (they achieved a mass density of
6.1 NCP per 11 nm with 32 nm wide fiber). Later on,
they added various chromatin structural elements to
their model, such as the nucleosome stem [190] or
irregularly spaced nucleosomes [193]. Many other
groups also developed coarse-grained models to
address the stability of nucleosome, its response to
stretching, and to analyze interactions between DNA
and cylindrical particles (nucleosomes) under physio-
logical conditions [194–198]. See [6] for a recent over-
view of coarse-grained and multiscale modeling of
chromatin.

Our group was among the first to address the role
of histone tails in chromatin compaction using a
detailed coarse-grainedmodel of the nucleosome. The
model uses different coarse-graining techniques to
model basic chromatin building blocks. Nucleosomes,
histone tails, DNA linkers and LHs are modeled as
separate entities using appropriate theoretical models

[15, 28, 33–35, 37, 199–205]. The nucleosome core
(eight histones plus wrapped DNA), without histone
tails, is modeled as a rigid object with irregular surface
interpreted via approximately 300 charged beads
[201]. The charge of each bead is assigned using the
discrete surface charge optimization algorithm devel-
oped by Beard and Schlick [206] based on the Debye–
Hückel approximation. The nucleosome core model
robustly reproduces the electrostatic field of the
nucleosome at physiological monovalent salt con-
centrations. DNA linkers between consecutive nucleo-
somes are interpreted as worm-like-chains. Their
negative charges are modeled using Stigter’s proce-
dure [202]. The core histone tails are separately mod-
eled, using the Warshel–Levitt united-atom protein
model, with one bead per five amino-acids [35]. The
LH was initially modeled as a rigid three-bead struc-
ture [15]. A recent refinement accounts for the inher-
ently dynamic and disordered nature of the LH
[199, 203]. The refined model includes flexible C-
terminal domains and a globular head attached to the
nucleosome [200]. Chromatin fiber configurations are
sampled using an efficient set of Monte Carlo
moves [35, 37].

Comparison with real-world experimental data has
been used to validate the model. For instance, the
model reproduces values of sedimentation coefficients,
radios of gyration and packing ratios encountered in
in vitro experiments [15, 28, 33, 34, 37, 200, 204, 205].
Various applications have detailed the influence of
dynamic tails [35], variable linker lengths [207] and
divalent Mg2+ ions [15], and the LH binding affinity
[205, 208] on chromatin’s structure [28]. Furthermore,
fiber models share properties of both theoretical mod-
els (zig-zag and solenoid) [28]. The model with
improved LH was able to explain the binding asym-
metry and relate the LH condensation and nucleosome
stem formation with the global condensation of chro-
matin [200]. A linear relationship between the LH con-
centration and the DNA linker length observed
experimentally could also be related to the formation of
a compact zig-zag fiber [209]. Forced induced unfold-
ings showed that LH increases fiber’s resistance to
unfolding, and that dynamic binding/unbinding of LH
reduces it [204, 205]. Heterogeneous elements promote
super beads-on-a-string configurations during stretch-
ing. Those configurations are biologically advantageous
because they selectively expose DNA as 10 nm linkers
between super-beads. The fibers with non-uniform lin-
ker lengths also exhibit smoother transitions because of
a more continuous range of similar stable configura-
tions [210]. The absence of 30 nm fiberswas also shown
in recent modeling work in collaboration with cross-
linking experiments. Persistence of zig-zag motifs
within a new model of hierarchical looping for meta-
phase chromosomes helps reconcile current models of
polymer melts on one hand and other models that
define clear chromosomal boundaries [31].

8

Phys. Biol. 13 (2016) 035006 OPerišić andT Schlick



The histone tails have been a major topic of mod-
eling studies due to their intrinsic disorder and their
roles in fiber compaction. The tails were addressed
using full-atom MD [45, 211] as well as coarse-grain-
ing [35, 37, 39, 41]. The researchers explored the roles
of individual tails and their interactions with nucleo-
somes and DNA before shifting their focus to tail
modifications. Our early studies, although less
detailed than full-atomMD simulations, revealed that
tails have multiple roles and are crucial for fiber com-
paction. They delineated roles of each tail, especially
the role of the H4 tail in mediating internucleosomal
interactions in highly compacted fibers with LHs, fol-
lowed by roles of ‘H3,H2A, andH2B tails in decreasing
order of importance’ [35, 37], a result concordant with
experimental finding on the role of H4 tail in fiber
condensation [54]. The nanosecond timescale MD
simulations of the nucleosome core by Roccatano and
coworkers [211] showed that at physiological salt con-
centrations histone tails adopt conformations in
which tail segments preferentially interact with major
and minor grooves of DNA and produce a slightly
more compact and solvent-protected nucleosome, a
result that contradicts experimental finding that tails
adopt a largely solvent-exposed structure at salt con-
centrations above 50 mM NaCl [212]. H3 in their
simulations exhibited the most noticeable conforma-
tional changes, correlated with the increased number
of close tail-DNA contacts, while H2A domains
showed affinity toward the DNA minor groove and
higher mobility, likely caused by the presence of the
H2A’s long C-terminal tail. Roccatano and coworkers
also showed that the canonical nucleosome particle is
mostly rigid under physiological conditions during the
nanosecond simulation runs. Over longer time scales,
however, nucleosomes exhibit conformational het-
erogeneity and spontaneous unwrapping/rewrapping
of nucleosomal DNA, as shown by the Langowski and
Widom groups [213, 214]. MD simulations by Biswas
and coworkers [45] showed that nucleosome simula-
tions with truncated H2A and H3 tails produce less
compact nucleosomes. The removal of these tails dis-
rupts the electrostatic potential around the H2A his-
tone, which in turn destabilizes the docking between
the H2A–H2B dimer and the H3–H4 tetramer. The
multiscale study of nucleosome unwrapping by the
Langowski group [41], based on coarse-grained mod-
eling and all-atom MD simulations, suggested that
histone tails could have an opposite effect on the
mononucleosome. While the attraction between the
H3 tail and the ‘acidic patch’, formed on the nucleo-
some surface by seven acidic residues from H2A and
H2B, can trigger partial unwrapping of DNA, and pre-
vent the DNA rewrapping, the attraction between the
H4 tail and the patch promotes full wrapping of the
nucleosome. That indicates that the H3 tails actively
participate in the initiation of the nucleosome remo-
deling. A recent study from the same group [40], based
on replica-exchange and MDs simulations showed

that the H2B and H4 tails have a single dominant
binding configuration with DNA, while the H2B and
H3 tails have multiple DNA binding configurations.
However, large portions of tails were found not to be
bound to DNA, which is an indirect conformation of
their complex roles. The Rippe group studied the
nucleosome’s resistance to forced unwrapping using
the steeredMD (SMD) [215]. The analysis of SMD tra-
jectories proposed a multistep process in which his-
tone tails have prominent roles in the resistance to
unwrapping. The authors also suggested that there are
two main base-pair related barriers to unwrapping.
However, results obtained with SMD simulations have
to be taken with precaution because SMD perturba-
tions are five to six orders of magnitude faster than
experimental techniques. The Langowski group
applied Brownian dynamics to a coarse-grainedmodel
with a uniform, distance-dependent potential to
examine the mechanical unfolding of DNA from the
torus-like nucleosome core [216]. Their simulations
suggested a gradual unwrapping of DNA from nucleo-
some and reproduced force-extension curves for the
low-force loading rate. Dobrovolskaia and Arya used
coarse-grained models of nucleosome and DNA with
experimentally derived position-dependent free
energy profile to address the influence of non-uniform
interactions between histone octamer and wrapped
DNA on the nucleosome’s resistance to external
force [217].

An effective modeling of histone modifications
requires both MD and coarse-grained approaches to
describe the direct influence of modifications on the
nucleosome and their influence on longer stretches
of the chromatin fiber. Yang and Arya [218] con-
firmed the experimental finding [219] that the inter-
actions between the H3 and H4 histone tails and the
nucleosome’s acid patch play a crucial role in the reg-
ulation of the nucleosome structure and may have a
significant role in the overall fiber architecture. They
suggested that the acetylation of the lysine 16 from
the H4 tail reduces the alpha-helix forming pro-
pensity of H4 and destabilizes its binding to the acidic
patch. In a similar study, Potoyan and Papopian
[220] found that the acetylation of H4K16 induces
partial ordering of the H4 histone and enhances its
propensity toward alpha-helical organization. The
ordering of the intrinsically disorder protein reduces
the tail’s binding affinity toward neighboring nucleo-
somes and weakens internuclosomal contacts, a
result in concordance with experimental findings
[54]. The acetylation of the H4 tail, despite reducing
the positive tail charge produces a stronger attraction
between the tail and DNA by inducing a partial col-
lapse of the tail that enables it to make more hydro-
phobic contacts with the surface of DNA [220]. Our
recent multiscale study follows the path established
by our earlier studies and addresses seven major his-
tone acetylations [39]. In that study Collepardo-Gue-
vara and coworkers show through combinedMD and
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coarse-grained Monte Carlo simulations of 24 oligo-
nucleotides that acetylations change the overall his-
tone-tail flexibility and decrease the disorder of tails.
The more folded tails have reduced interaction sur-
face areas that limit inter-nucleosomal interactions
in oligonucleosomes and trigger chromatin fiber
opening. For instance, a H4 tail with acetylated resi-
dues has a limited ability to extend and reach neigh-
boring nucleosomes but has a higher affinity toward
parental DNA. The results clearly underscore many
factors that affect the chromatin compaction in
cooperative manner, and confirm that the hyper-
acetylation is not a prerequisite for a significant struc-
tural change. The acetylation of a single H4 lysine
(H4K16) prohibits the formation of compact fiber
and affects the formation of both higher order chro-
matin structures and functional interactions between
chromatin fiber and non-histone proteins [54, 220].

Chromatin-protein interactions are an attractive
research topic also. An MD study by Papamokos and
coworkers [221] suggested that the binding of a pro-
tein important for the formation of the hypercon-
densed mitotic chromosomes (Heterochromatin
Protein 1—HP1, [6]) to the H3 tail is strongly affected
by the H3S10 phosphorylation. That study discovered
that the phosphorylated H3S10 residue forms a salt
bridge with H3R8 and thus impacts the HP1 binding
to the methylated H3K9me2/3. A similar MD based
study depicted the non-covalent binding of lysine
specific demethylase-1 enzyme (LSD1) with its co-
repressor protein (CoREST) to chromatin [222]. This
study is notable because LSD1 is one of the most pro-
mising epigenetic targets for drug discovery against
cancer and neurodegenerative diseases [222]. The
authors showed that the LSD1/CoREST complex
binds to H3 via an induced-fit mechanism, an infor-
mation potentially useful in designing LSD1 inhibi-
tors. The combined docking, Brownian dynamics,
and normal mode analysis by the Wade group [199]
showed that the LH H1/H5 can adopt various dock-
ing positions near the nucleosome’s dyad axis, a
results in concordance with the latest experimental
studies that suggests that asymmetric, on- and off-
dyad, binding of the LH globular domain may lead
toward distinct higher order chromatin structures
[223]. The variable LH positioning is important
because it allows the LH to influence the higher order
structure of chromatin fiber in adaptable fashion
through the modulation of entering/exiting angles of
DNA linkers [224].

Polymer and continuummodels

Polymer models are less refined than mesoscale
models, but cover much larger spatial scales. They
interpret chromatin as a chain of spherical beads that
interacts through simple harmonic and Lennard–
Jones systems, where each bead represents more than

one nucleosome core. The polymer models have been
developed as a response to large-scale experimental
observations by various chromatin conformation
capture techniques based on cross-linking of sequen-
tially distant DNA segments. Those techniques pro-
duce kilo-base (3C), mega-base (4C and 5C) and
genome-wide (Hi-C) interaction frequencies between
genome loci in the nucleus as statistical averages over
cell populations [225]. Interaction frequencies in
single cells can be analyzed via 3C [226] and fluores-
cence in situ hybridization techniques [227]. Conti-
nuum models, on the other hand, were developed to
interpret experimental data related to in vivo cell
dynamics. They primarily use analytical approaches,
based on fluid dynamics, to explain the behavior of
large segments of chromatin in the cell nucleus.

Both experimental observations and simulations
established the fractal model of the structural organi-
zation of chromosomes (first introduced by Grosberg
and coworkers [228, 229]). The model assumes globu-
lar organization of chromosomes at almost all scales.
In that case the contact probability of genomic loci as a
function of the genome distance (or sub-chain length)
follows the same scaling law. That law is the outcome
of the self-similar polymer (chromatin) domains orga-
nized into non-equilibrium hierarchical structures
with open-state and untangled topologies that rarely
interfere with each other [230]. The Mirny lab intro-
duced the fractal framework using a 20 nm bead poly-
mer chain in which each bead covers six nucleosomes
[231]. They were able to generate a fractal-like organi-
zation of their chain with a power law contact prob-
ability with the −1 exponent. However, the
equilibration of that chain produced a uniform dis-
tribution, incompatible with the interphase chromo-
somes. Later on, they decreased the bead size to 10 nm
and applied attractive and repulsive Lennard–Jones
potentials, softened at short distances to allow chain
crossing [232]. This refined model produced contact
probabilities consistent with experimental data and
proposed local loop formations, without reproducible
radial positions, with the rest of their model chromo-
some being in disordered state. Themodel suggested a
power law dependency of contact probability on geno-
mic distance with the exponential factor −0.5 for
short distances, that sharply decays with the increase
in distance [232]. Barbieri and coworkers showed that
fractal organization also depends on the concentration
of protein cofactors able to bridge different genomic
regions [233]. Simulations based on a polymer model
composed of two set of beads by the Langowski lab
[234] showed that yeast chromosomes have pre-
ferential positions in cell nucleus with dynamical clus-
tering of functional elements of genomes. Jost and
coworkers addressed epigenetic modifications
through block organized chromatin model [235]. In
their interpretation, the chromatin chain is organized
into various blocks of identical monomers that pre-
ferentially interact with other monomers of the same
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chromatin type over interactions with monomers of
other types. They applied Langevin dynamics and
Gaussian like potentials to sample fiber configura-
tions. Their results are consistent with Hi-C data
obtained from 10 Mbp drosophila regions. The topo-
logical domains they generated are related epigeneti-
cally and form a multistable fiber with coiled and
collapsed microphase regions that separate different
epigenetic domains. Bruinsma and coworkers [236]
produced a two-fluid analytical model (nucleoplasm
as a solvent and chromatin as a solute) to interpret
experimental observation of coherent movements
beyond single chromosomes [237]. They showed that
the nucleus in ATP-depleted cells is characterized with
passive longitudinal thermal fluctuations, while ATP-
active cells have intense transverse long wavelength
velocity fluctuations driven by force dipoles depen-
dent on ATP. Isaacson and coworkers examined the
time required to find specific DNA binding site as a
function of the chromatin density (expressed as the
volume exclusivity, a potential term that excludes a
diffusing protein from a given volume filled with chro-
matin) [238, 239]. Their results based on a continuum
model indicate that the time sharply decreases as the
exclusivity increases and reaches a minimum value
and then slowly increases with the increase in volume
exclusivity.

Discussion

The chromatin structure problem has remained a
challenge despite many recent advances in both
experimentation and modeling. Its appeal comes not
only from the puzzling nature of chromatin architec-
ture and still unknown relationship between local fiber
properties and behavior of the chromatin fiber at large,
but also from the chromatin’s key role in gene
expression. And the deciphering that role has very
practical implications because the disruption of DNA
packaging has serious implications on health. Indeed,
chromatin structure can be easily disrupted by histone
modifications. That disruption can affect overall
chromosome integrity and alter gene expression,
including the aberrant regulation of oncogenes and/
or tumor suppressors. However, new treatment ave-
nues arise because the majority of histone modifica-
tions is reversible.

The detailed modeling of histone modifications is
required for a proper interpretation of chromatin fiber
structure and dynamics because experimentation is still
limited in scope and resolution. The current modeling
efforts addressed only general properties of chromatin
fiber and described a very small number of histone
modifications. To understand the chromatin fiber
structure and its behavior, all modifications and their
interplay have to be addressed in a systematic fashion.

Figure 2.Multiscale chromatinmodeling covers all levels ofmodeling, from atomicmodels of nucleosomes and histone
modifications, via oligomers and polymermodels to continuousmodels that interpret global chromatinmotion in cell nucleus.
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That enormous task will require MD simulations of all
tail modifications, within mononucleosome and with-
out it. The puzzling role and behavior of LH has to be
further examined, using docking, MD and coarse-
graind simulations. Furthermore,MD simulations have
to be performed on structures larger than dinucleo-
somes, with and without histone modifications. Simu-
lations with four, or even more, nucleosomes are
necessary if we want to fully grasp the role of tails in
internucleosomal interactions. Those simulations have
to based on different crystal structures becausemajority
of current simulations has been based on the same high
resolution structure, 1KX5 [175]. The role of DNA
sequence in nucleosome positioning and fiber dynam-
ics also has to be addressed in a systematic fashion. That
will require all atom representations of DNA linkers
and, probably, combination of classical and quantum
MD. The nucleosome’s mechanical resistance to
unfolding has been addressed using only fast SMD
[215], orders of magnitude faster that experimental
stretching.New simulations have to be performedusing
much slower pulling on single nucleosomes with and
without modifications, and, if possible, on equilibrated
systemswithmorenucleosome cores.

All-atom simulations are, despite recent advances
in hardware, numerically still very expensive. That
means that longer stretches of fiber have to be simu-
lated using coarse grained models. Current models are
very detailed, but have to be improved to include all his-
tone modifications, as well as LH and nucleosome core
dynamics, especially during mechanical stretching.
Moreover, they have to accurately interpret the influ-
ences of various binding factors and ion environments.

To facilitate research and collaboration, themodel-
ing approaches should be able to record chromatin
simulation trajectories, corresponding starting config-
urations, and force filed parameters in a standardized,
human readable format(s) based on attribute-value
pairs. Similarly, software tools should be open sourced
and deposited in easily accessible online repositories.
This can enable an approach to modeling where an
appropriate algorithm can be called if necessary in
semi-autonomous fashion. For instance, a coarse-
grained model can invoke an atom-based model to
interpret an unusual configuration. This could, in prin-
ciple, allow zooming-in and zooming-out of chromatin
regions, see figure 2, because information between
modeling levels can be easily exchanged using a com-
mon data format. In that case, the long chromatin fiber
is already in energetically favorable configurationwhich
means that only sampling on a limited scale with spatial
constraints, using local neighborhoods would have to
be performed. Such a gradual, object-oriented model-
ing enables inheritance of general properties from one
modeling level to another without the burden of
increased numerical complexity. However, it has to be
applied with caution because an apparently small mod-
ification with a limited influence on a local fiber

neighborhood can have a crucial role in the behavior of
longer stretches of the chromatin fiber. Those longer
stretches often exhibit puzzling dynamic behavior that
requires a detailed interpretation in the light of gene
expression patterns in various tissue andorgans.

Chromatin structure and its relation to the histone
code remains a central question in structural/mole-
cular biophysics and genetics. Addressing it fully
requires a joint effort of experimentalist andmodelers.
To facilitate these efforts, a more facile information
flow and data/program sharing between different
teams could be valuable.
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