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Abstract

Dual graphs have been applied to model RNA secondary structures.
The purpose of the paper is two-fold: we present new graph-theoretic
properties of dual graphs to validate the further analysis and classifica-
tion of RNAs using these topological representations; we also present a
linear-time algorithm to partition dual graphs into topological compo-
nents called blocks and determine if each block contains a pseudoknot
or not. We show that a block contains a pseudoknot if and only if the
block has a vertex of degree 3 or more; this characterization allows us to
efficiently isolate smaller RNA fragments and classify them as pseudo-
knotted or pseudoknot-free regions, while keeping these sub-structures
intact. Even though non-topological techniques to detect and clas-
sify pseudoknots have been efficiently applied, structural properties of
dual graphs provide a unique perspective for the further analysis of
RNAs. Applications to RNA design can be envisioned since modular
building blocks with intact pseudoknots can be combined to form new
constructs.

Keywords: Graph Theory, RNA Secondary Structures, Partitioning, Bi-
connectivity, Pseudoknots.

1 Introduction

Graph theory is a well-established field of mathematics with applications to
areas where the objects can be modeled as discrete structures called graphs or
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networks. The study of combinatorial properties of these networks, such as
communication, chemical, and biological networks, can be guided by graph-
theoretical principles and algorithms. Specific examples include the study of
chemical structures (e.g., hydrocarbons, drug compounds) [16, 21], genetic
and cellular relationships [10, 22], and transportation networks [24].

In mathematical terms, an undirected graph G = (V,E) is a discrete
object described by a finite set of vertices V and a set E of unordered pair
of vertices called edges, where each edge represents a connection between
two vertices.

The graphs described in this paper were introduced in 2003 by Gan et.
al [8], called dual graphs, were applied to model RNA secondary struc-
tures (2D). The 2D elements of RNA molecules consist of double-stranded
(stem) regions by base pairing such as Adenine-Uracil, Guanine-Cytosine,
Guanine-Uracil, and single stranded loops; stems and loops are mapped to
the vertices and edges of the corresponding dual graph, respectively. Dual
graphs are needed to represent pseudoknots, structures involving an inter-
wining of two-base-paired regions of the RNA. These are common elements
in many biologically important RNAs.

Given a graph G = (V,E), let the degree of a vertex u ∈ V be the
number of edges incident at u in G. In this paper we introduce a partitioning
algorithm for dual graph representations of RNA 2D structures to recognize
pseudoknots. Our algorithm partitions a dual graph into graph-theoretic
components called blocks and then determines whether each block contains
a pseudoknot; we show that a block contains a pseudoknot if and only if the
block has a vertex of degree 3 or more. Thus our methodology provides a
systematic approach to partition an RNA 2D structure, modeled as a dual
graph, into smaller RNA regions containing pseudoknots, while providing a
new topological perspective for the analysis of RNAs.

Pseudoknots can be classified into two main groups: standard and re-
cursive pseudoknots [6, 28]. The latter is distinguished from the former by
having nested pseudoknots within a pseudoknot. While our partitioning al-
gorithm can detect general pseudoknots, it is not within the scope of this
work to classify them. With extensions of our graph-theoretical techniques,
however, it may be possible to analyze and treat standard and the more
complex recursive pseudoknots structures further, as needed for specific bi-
ological applications.

In the next section, we present background material relevant to this
paper, as well as notation and mathematical definitions of RNA primary,
secondary, and of pseudoknot structures. In Section 3 we describe our par-
titioning approach of a dual graph G into components G′ ⊆ G called blocks,
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as well as new combinatorial properties of dual graphs. In Section 4, we char-
acterize these blocks, and show that a block contains a pseudoknot in the
RNA 2D structure if and only if the block has a vertex of degree 3 or more.
This characterization permits us to isolate pseudoknots, without breaking
them so their structural properties can be further studied; moreover we also
present an alternative way to visualize the presence of pseudoknots in blocks
by considering their planar geometric-duals ([13], pg.113). In Section 5 we
illustrate algorithmic tests performed on dual graph representations of ex-
isting RNA motifs, and classify each block of a dual graph as having a
pseudoknot or not. We summarize the findings and outline new directions
in Section 6. An Appendix section includes definitions, mathematical proofs,
and supporting material.

2 RNA background and definitions

Modeling of RNAs as graphs began in 1978 when Waterman introduced
topological representations of RNA to analyze the secondary structure of
tRNA [27]. In 1990, Shapiro and coworkers used a tree representation of 2D
structures to measure structural similarities [25].

In 2003, Gan et. al introduced tree and dual graph-theoretic representa-
tions of RNA 2D motifs in a framework called RAG (RNA-As-Graphs) [7,
8, 9, 15]. While tree graphs are intuitive and easily applied to many ar-
eas of RNA research such as partitioning (e.g., Kim et al. [19]), complex
RNA secondary structures with pseudoknots (PKs) can only be represented
by dual graphs (see [18] for a survey on these topological representations);
a pseudoknot is an intertwining of two-based-paired regions (stems) of an
RNA (see Figure 1).

The structural configuration of pseudoknots does not lend itself well to
computational detection due to its overlapping nature. The base pairing
in pseudoknots is not well-nested making the presence of pseudoknots in
RNA sequences more difficult to predict by the dynamic programming [4]
and context-free grammars standard methods [2]. Our methodology, based
on topological properties of dual graphs, provides a new perspective for the
problem of detection and classification of pseudoknots and of general RNAs.

Following (Kravchenko, 2009 [17]), we define our biological variables as
follows.

Definition 1 General terms:

i. RNA primary structure: a sequence of linearly ordered bases x1, x2, . . . , xr,
where xi ∈ {A,U, C,G}.
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ii. canonical base pair: a base pair (xi, xj) ∈ {(A,U), (U,A), (C,G), (G,C),
(G,U), (U,G)}.

iii. RNA secondary structure without pseudoknot - or regular structure,
encapsulated in the region (i0, . . . , k0): an RNA 2D structure in which
no two base pairs (xi, xj), (xl, xm), satisfy i0 ≤ i < l < j < m ≤ m0

(i.e., no two base pairs intertwined).

iv. a base pair stem: a tuple (xi, xi+1, . . . , xi+r, xi+(r+1), . . . , xj−1, xj) in
which (xi, xj), (xi+1, xj−1), . . . , (xi+r, xi+(r+1)) form base pairs.

v. loop region: a tuple (x1, x2, . . . , xr) in which ∀i≤j≤r(xi, xj) does not
form a base pair.

vi. a pseudoknot encapsulated in the region (i0, . . . , k0): if ∃l,m, (i0 < l <

m < k0) such that (xi0 , xm) and (xl, xk0) are base pairs.

A graphical representation is an intuitive and natural way to depict an
RNA 2D structure (see Figure 1-(a),(b)), in which the x-axis is labeled
according to the primary linearly ordered sequence of bases (Definition 1-i),
and a stem (Definition 1-iv) is represented by arcs connecting base pairs. A
region on the x-axis between the end-points of the arcs representing stems
is called a segment.

A dual graph can be equivalently defined from the graphical representa-
tion of an RNA 2D structure as follows (Figure 1).

Definition 2 The dual graph is derived by mapping stems and the segments
between stems (x-axis), of the graphical representation of an RNA 2D struc-
ture, to the vertices and edges of the dual graph, respectively.

In the next section we propose our partitioning approach of a dual graph
G, into subgraphs G′ ⊆ G, called blocks. In addition we show new combi-
natorial properties of dual graphs that will be later invoked to prove that a
block contains a pseudoknot if and only if the block has a vertex of degree
3 or more.

3 Partitioning of a graph into blocks and combi-

natorial properties of dual graphs

Let G = (V,E) be a connected graph; the following definitions will be used
below. Unless otherwise stated, we follow the notation of Harary [13],
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Figure 1: Graphical and dual graph representations of an RNA 2D struc-
ture. (a) graphical representation of a pseudoknot-free RNA
primary sequence and embedded stems or base pairs; (a′) corresponding
dual graph representation. (b) graphical representation of a pseudoknotted
RNA 2D structure; (b′) corresponding dual graph.

Definition 3 Connectivity

i. A vertex-set X ⊆ V is a vertex-disconnecting set if deletion of X from
G, denoted by G−X, results in a disconnected graph.

ii. A vertex v is an articulation point or cut-vertex if G − v results in a
disconnected graph (i.e., at least two components remain).

iii. The vertex-connectivity, κ(G), is the minimum number of vertices
whose removal from G results in a disconnected graph or in a isolated
vertex. If G is a single edge, then κ(G) = 1.

iv. A connected component is non-separable if it does not have an artic-
ulation point (or cut-vertex). Please note that single edges or isolated
points are non-separable.
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v. A block is a maximal (edge-wise) non-separable graph.

The concepts of articulation points and maximal non-separable compo-
nents (blocks) are related. Indeed, articulation points partition any graph
into blocks (see Fig. 2). Except when a graph G is composed of just two
vertices adjacent by one or several (parallel) edges (κ(G) = 1), any maximal
non-separable graph is bi-connected (i.e., κ(G) ≥ 2). The fact that blocks
are maximally non-separable subgraphs allows us to isolate pseudoknots,
without breaking their structural properties.
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block 2
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block 4
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Figure 2: Identification of articulation points and partitioning of the dual
graph corresponding to PDB01069 RNA 2D (Catalytic Ribozyme RNA) into
blocks.

Our partitioning algorithm is based on the classical result for identify-
ing block components in a connected undirected graph introduced to John
Hopcroft and Robert Tarjan (1973, [14]), that runs in linear computational
time.

We next state new combinatorial properties associated with dual graphs
that will be invoked to show that a block contains a pseudoknot if and only
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if it has a vertex of degree at least 3.
A graph is Eulerian if there exist a trail (see Definition 5-iii, Appendix 7.1)

from a vertex v0 of G, ending at vertex vk, covering all the edges of the topol-
ogy; if v0 = vk then the graph is an Eulerian cycle (see [13], pg. 64). Dual
graph representations of general RNA 2D structures, and specifically of PKs,
can be easily shown to be Eulerian graphs from Definition 2. By starting
from the origin on the x-axis of the graphical representation and traversing
to the right, a unique trail in its dual graph can be described, where all
edges are covered.

Lemma 1 The dual graph representations of RNA 2D structures and of
PKs are Eulerian.

As depicted in Figure 1-(b), the alternating sequence of stems and segments
{S1, I, S2, II, S4, III, S2, IV, S1, V, S3, V I, S4, V II, S3} of the graphical rep-
resentation (b) forms an Eulerian trail in its dual graph (b′).

As a consequence of Lemma 1, it follows that at most two vertices are of
odd degree in a dual graph representation of an RNA 2D structure or a PK
(see [13], pg. 64). From this point on, we delete self-loops in dual graphs
as they correspond to stems, in a graphical representation, not containing
or not being crossed (intertwined) by another stem. In addition under the
assumption that two different stems cannot share the same bases, each end-
point of a stem in the graphical representation can be adjacent to at most
two other stems, and thus the maximum degree of a vertex of a dual graph
is 4.

These facts together with Lemma 1, yield the following corollary that
will be later referenced to prove our main results.

Corollary 2 Dual graph representation of an RNA 2D structure (PKs) has
the following properties:

1. The graph is Eulerian.

2. The maximum degree of any vertex is four.

3. The graph has at most two vertices of odd degree.
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4 Mapping PKs to blocks with certain degrees and

combinatorial properties of dual graphs

4.1 Partitioning of dual graphs into pseudonotted and pseudoknot-

free blocks

Now we can prove that once a dual graph representing an RNA 2D structure
has been partitioned into blocks, a block is contains a pseudoknot if and only
if it contains a vertex of degree 3 or more. The mathematical proofs of the
lemmas stated in this section, are shown in Appendix 7.2.

In preparation to the main results of this chapter, we first define the
following.

Definition 4 For any graph G, blocks can be partitioned into three classes,

1. Single edges.

2. Cycles.

3. Blocks containing a vertex v of degree at least 3.

From Definition 1-iii, an RNA 2D structure is regular (pseudoknot-free)
and encapsulated in a region (i0, . . . , k0), if no two base pairs (xi, xj), (xl, xm),
satisfy i < l < j < m, i0 ≤ i, j, l,m ≤ m0. Under the previous assumption
that self-loops are deleted, this definition yields the following lemma,

Lemma 3 Each block in the dual graph representation of a regular RNA 2D
structure is either a bridge or a cycle of length l, l ≥ 2 (see Definition 4-1,2).

Conversely we show the following.

Lemma 4 If an RNA 2D structure contains a pseudoknot, then its corre-
sponding dual graph contains a block having a vertex of degree 3 or more
(see Definition 4-3).

Lemma 3 and Lemma 4 yield our main result as follows.

Corollary 5 Given a dual graph representation of RNA 2D structure, a
block represents a pseudoknot if and only if the block has a vertex of degree
3 or more.

To summarize our partitioning algorithm, we performed the following
steps.
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1. Partition the dual graph into blocks by application of Hopcroft and
Tarjan’s algorithm, as described in Section 3.

2. Analyze each block to determine if it has a vertex of degree at least
3. If that is the case then the block contains a pseudoknot, accord-
ing to Corollary 5. If not then the block represents a pseudoknot-free
structure.

4.2 Other relevant combinatorial properties of dual graphs

The analysis required to identify and study different types of pseudoknots,
based on combinatorial properties of dual graphs, seems to be justified. For
example every dual graph known so far has a planar embedding, i.e., it can
be drawn in a plane so no two edges cross, even though to show planarity
for general dual graphs remains an open problem. The planarity property of
dual graphs is not only supported by simple observations but also by the fact
that the degree of any vertex of a dual graph is at most four. Every planar
graph G can be divided into regions, where each edge in E divides exactly
two regions of G. The geometric-dual1 (see [13], pg. 113) representation
Gd = (Vd, Ed) of a planar graph G is obtained as follows: for each region
of the graph G we have a corresponding vertex in Gd, and if two regions of
the graph G have a common edge bordering them, then the corresponding
vertices in Gd will be adjacent.

It can be easily shown, from Corollary 5, that the geometric-dual of a
graph G representing a pseudoknot-free region (under the assumption that
G is planar) is composed of a vertex vouter, corresponding to the outer-
region of G, and vouter is adjacent to a vertex v by r parallel edges, if v
maps to a cycle (phase) on r vertices in G (bridges in G correspond to self-
loops in Gd emanating from vouter). Consequently deleting the vertex vouter
from Gd results in just isolated vertices (see Fig. 3). Conversely, deleting
vouter from Gd when G represents a pseudoknotted region, results in a graph
containing connected components with at least two vertices corresponding
to pseudoknotted blocks (see Fig. 4). These facts strongly suggest that
the use of dual graphs and their geometric-duals, can shed light into the
connectivity and degree analyses of standard pseudoknots (see Definitions 7
and 8, Appendix 7.3), as well as more complex pseudoknotted structures
(i.e., recursive pseudoknots); it also provides a fertile theoretical ground for

1geometric-duals of planar graphs are also known as ”dual-graphs” in the literature,

which unfortunately coincide with the denomination of the graph representations of RNA

2D discussed in this paper.

9



the study of RNA structure and function.
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b) c)

pseudoknot-free region

geometric-dual

v_outer

d)

deleting v_outer from the geometric-dual results in two isolated points

v1
v1

v1

v2
v2

v2

outer region

Figure 3: A pseudoknot-free region. a) dual graph representation of a
pseudoknot-free RNA; b) and c) corresponding geometric-dual; d) deleting
vouter results in just isolated points.

5 Experimental results

We illustrate our partitioning algorithm, described at the end of Section 4.1,
on the dual graph representations of two RNA 2D structures, based on the
New York University’s RAG database [15]. Our partitioning algorithm was
implemented in C++ and run on a Hewlett-Packard Pavilion Dv6 (2.4 GHz)
notebook. Each partitioning takes less than one second because of the linear
computational complexity of Hopcroft and Tarjan’s algorithm.

Consider the PDB01069 RNA 2D structure, Post-Cleavage State of the
Thermoanaerobacter Tengcongenis GlmS Ribozyme, known to be the only
catalytic RNA to require a small-molecule activator for catalysis (see Klein
et al. [20]). Its dual graph is decomposed into 4 blocks as illustrated in

10



v_outer

v1

v2 v3
v4v5v6

v1

v2 v3
v4v5v6

a)

b)

c)

pseudoknotted RNA

geometric-dual (black vertices and dotted lines).

deleting v_outer from the geometric-dual results in single vertices (pseudoknot-free blocks)
and connected components corresponding to pseudoknotted blocks.

Figure 4: A pseudoknotted region. a) dual graph representation of a pseudo-
knotted RNA; b) corresponding geometric-dual Gd; c) deleting vouter from
Gd results in either isolated vertices corresponding to pseudoknot-free blocks
or connected components (pseudoknotted blocks).

Figure 2. According to Corollary 5, block 1 and block 3, a cycle and an edge,
respectively, correspond to regular regions, while blocks 2 and 4, correspond
to pseudoknots.
We next consider the dual graph representation of PKB236 (see Fig. 5),
Regulatory Pseudoknot of the Interferon-gamma Gene 5′-UTR, thought to
be involved in regulatory translation (see Ben-Asouli et al. [1]); in this case
the only block is the dual graph itself. As this block contains a vertex of
degree 3 or more, then this block is a pseudoknot.

Appendix 7.4 depicts the output generated when our algorithm was run
on the aforementioned RNA structures.
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3

4

5

6

PKB236

block 1

dual graph representation of PKB236 2D

Figure 5: Partition of the dual graph corresponding to motif PKB236 (Reg-
ulatory Pseudoknot of the Interferon-gamma gene 5′-UTR).

6 Concluding remarks and future work

We have presented a partitioning approach of the dual graph representa-
tion of RNA 2D structures into maximal non-separable components called
blocks. Partitioning of a graph into blocks can be efficiently accomplished
by application of Hopcroft and Tarjan’s algorithm to identify articulation
points. From mathematical definitions of RNA 2D structures and of pseu-
doknots, we proved that an RNA 2D structure contains a pseudoknot if and
only if the dual graph representation has a block in which one of the vertices
is of degree 3 or more. Our partitioning algorithm suggests that dual graphs
along with the graph-theoretic properties described in the paper can help
analyze connectivity and features of both standard (see Appendix 7.3) and
recursive pseudoknots. Ultimately partitioning and classification of dual
graphs could guide the discovery of modular regions of RNA and thus be
exploited for design of novel RNAs constructed from these building blocks.
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7 Appendix

7.1 Graph Theory definitions

Let G = (V,E) be a graph with vertex-set V and edge-set E. We next
present general graph-theoretic definitions following Harary [13].

Definition 5 General graph-theoretic terms:

i. Let H1.x.H2 represent the graph composed of two graphs, H1, and H2,
sharing the same vertex x.

ii. A walk between two vertices u and v in graph G = (V,E), is an alter-
nating sequence of vertices and edges < vo = u, e1, v1, . . . , ek, vk = v >

such that ei = (vi−1, vi) is an edge of G.

iii. A trail between two vertices u and v in graph G = (V,E), is a walk
between u and v with no repetition of edges.

iv. A path between two vertices u and v in graph G = (V,E), is a walk
(or trail) between u and v with no repetition of vertices.

v. A graph is Eulerian if there exist a trail from a vertex v0 of G, ending
at vertex vk, covering all the edges of the topology, and if v0 = vk then
the graph is an Eulerian cycle.

7.2 Proofs of lemmas stated in Section 4.1

From Definition 1-iii, an RNA 2D structure is regular (pseudoknot-free) and
encapsulated in a region (i0, . . . , k0), if no two base pairs (xi, xj), (xl, xm),
satisfy i < l < j < m, i0 ≤ i, j, l,m ≤ m0. Under the previous assumption
that self-loops are deleted, this definition yields the following lemma,
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Figure 6: Classification of PK-free regions and graphical/dual/block repre-
sentations. (a) graphical, dual, and block representations of r nested-stems
- (b) graphical, dual, and block representations of r adjacent stems - (c)
graphical, dual, and block representations of a stem containing r − 1 adja-
cent stems.

Lemma 3 Each block in the dual graph representation of a regular RNA 2D
structure is either a bridge or a cycle of length l, l ≥ 2 (see Definition 4-1,2).

Proof. Consider the graphical representation of a regular RNA 2D struc-
ture; we will proceed by construction. A regular (pseudoknot-free) region
can be recursively defined as follows (see Fig. 6): (a) a region composed of
r nested-stems; (b) r adjacent stems, (c) a stem containing a sequence of
r − 1 adjacent stems; (d) a single stem (represented as an isolated vertex
in its dual graph, not illustrated in Fig. 6). In a transformation, a set of
stems identified by properties a, b, and c in the graphical representation, are
reduced (converted) into a single stem, while its corresponding dual graph is
generated (see Definition 2). The blocks obtained from the dual graph rep-
resentations of these properties, are either cycles of length 2, single edges, a
cycle of length r, or an isolated vertex, respectively. Consider a sequence of
transformations of dual graphs G1 ⇒ G2 ⇒ . . . ⇒ Gn, where the dual graph
Gi+1 is obtained from dual graph Gi by following the precedence rules in
which, first, internal stems of the ones identified by properties (a) through
(c) of the graphical representation are reduced into a single stem, while the
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corresponding dual graph is generated; in the dual graph we distinguish the
vertex corresponding to the outer-stem. Because only distinguished vertices
could be later made adjacent to other vertices in a transformation, the blocks
generated by the sequence of transformations from G1 through Gn−1 will
remain blocks in Gn, with the possible addition of blocks composed of single
edges. �

To illustrate Lemma 3, consider Figure 7 depicting the graphical repre-
sentation of a pseudoknot-free region. The stems S0, S1, and S2, identified
by property (a), with corresponding dual graph with distinguished vertex
S0, are then reduced into a single stem in the graphical representation. Simi-
larly, by property (a), we reduce the pairs of nested-stems S3, S4, and S5, S6,
to two single stems with distinguished vertices S3 and S5, in the dual graph,
respectively. As the stem S9 contains a sequence of 3 (reduced) stems, by
application of property (c), it can be reduced to a single stem with dual
graph composed of a cycle on 4 vertices, and distinguished vertex S9. Fi-
nally, by property (b), we connect the sequence of 3 (reduced) stems (i.e.,
S0, S9, and S8) by single edges in the dual graph.
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S7 S8
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S1
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primary sequence

S3
S4

S5
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S7 S8
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property c)

G1
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G2

blocks of G3

S9

S3 S5 S7

S9

S3 S5 S7

4)

Figure 7: An example illustrating Lemma 3.

Conversely we show the following.

17



Lemma 4 If an RNA 2D structure contains a pseudoknot, then its corre-
sponding dual graph contains a block having a vertex of degree 3 or more
(see Definition 4-3).

Proof. By Definition 1-vi, if an RNA 2D structure contains a pseudoknot,
there exist a stem crossing (interweaving) another stem. Let us denominate
these interweaving stems, in the graphical representation, S1 and S2, re-
spectively. There exist then three independent paths, X1, X2, and X3, from
S1 to S2 (see Figure 8-(a)), following the primary sequence of the graphi-
cal representation; these three paths correspond to trails in the dual graph
representation (see Definition 5-iii of Appendix 7.1). We first note that
X2 ∪ X3 forms an Eulerian cycle G1 in the dual graph representation (see
Definition 5-v, and Lemma 1), beginning and ending at S2, having S1 as one
of its vertices. Because an Eulerian cycle is the union of simple cycles ([13],
pg. 64) (Figure 8-(b)), then the articulation points of G1 have maximum
possible degree 4 (see Corollary 2-2); when we add then the trail X1, from
S1 to S2 to G1, X1 cannot touch (include) any of the articulation points
of G1. Let G2 = B1.a.B2.b.B3.c.B4 . . . Br (see Definition 5-i, Appendix 7.1)
be a subgraph of G1 describing a sequence of blocks B1, B2, . . . , Br, S1 is a
vertex of B1, and S2 is a vertex of Br, in which the set Ã = {a, b, c.....} is the
set of articulation points connecting the blocks of G2. Let G

∗ be the graph
obtained by adding the trail X1 to G2. Clearly κ(G∗) (see Definition 3-iii)
is at least 2 as deleting a single articulation point in Ã won’t disconnect G∗

as X1 does not have a vertex in Ã, thus G∗ is a non-separable graph (Defi-
nition 3-iv). As both S1 and S2 have degree at least 3 in G∗, then there is a
block containing G∗ (possibly itself) having a vertex of degree 3 or more. �

7.3 Degrees in Pseudoknots

In this section we introduced the concept of degree in pseudoknots as defined
by Dost et al. [6], to suggest the study of structural properties of RNA
secondary structures and of pseudoknots, represented as dual graphs.

Intuitively speaking the degree of a pseudoknot refers to the minimum
number of turns (plus one), the primary sequence must be object to avoid
the crossing of base pairs. As an example consider Figure 9-a, in which two
turns (i.e., the pseudoknot is of degree 3) of the primary sequence suffice so
no two base pairs intertwine.

Let x1, x2, . . . , xn be a sequence of linearly ordered bases. An alternative
notation for a secondary structure is: M = {(i, j)|1 ≤ i < j ≤ n, (xi, xj) is
a base pair}. Let also define Mi0,k0 ⊆ M , as Mi0,k0 = {(i, j) ∈ M |i0 ≤ i <
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with S1 as one of the vertices. As an Eulerian cycle is the union of simple cycles,

Figure 8: Supporting illustration for the proof of Lemma 4

j ≤ k0}. The secondary structure, in the absence of crossing or intertwining
base pairs is called regular, and has the following definition.

Definition 6 An RNA 2D structure Mi0,k0 is regular iff Mi0,k0 = ∅ or
∃(i, j) ∈ Mi0,k0 such that

i. Mi0,k0 = Mi0,i−1 ∪Mi+1,j−1 ∪Mj+1,k0 ∪ (i, j) (no base pairs cross the
partitions).

ii. Each of Mi0,i−1,Mi+1,j−1,Mj+1,k0 is regular.

The following two definitions describe the concept of degrees in pseudo-
knots (see Figure 9).

Definition 7 Mi0,k0 is a simple pseudoknot iff Mi0,k0 is regular or ∃ j1, j2 ∈
ℑ+, (i0 ≤ j1 < j2 ≤ k0) such that the resulting partition, D1 = [i0, j1 −
1],D2 = [j1, j2 − 1],D3 = [j2, k0], satisfies the following:

i. Mi0,k0 = (SL ∪ SR), where SL = {(i, j) ∈ Mi0,k0 |i ∈ D1, j ∈ D2} and
SR = {(i, j) ∈ Mi0,k0 |i ∈ D2, j ∈ D3} (i.e., base-pairs crossing regular
regions).
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ii. SL and SR are regular.

Definition 8 Mi0,k0 is a standard pseudoknot with degree d (d ≥ 3) iff
Mi0,k0 is regular or ∃ j1, . . . , jd ∈ ℑ+, (i0 ≤ j1 < . . . < jd ≤ k0) which divide
[i0, k0] into d parts, D1 = [i0, j1 − 1],D2 = [j1, j2 − 1], . . . ,Dd = [jd, k0], and
satisfy the following:

i. Mi0,k0 =
⋃d−1

l=1 Sl, where Sl = {(i, j) ∈ Mi0,k0 |i ∈ Dl, j ∈ Dl+1}, 1 ≤
l < d.

ii. Sl is regular for all 1 ≤ l < d.

i0

j’0

j0

k0

i0 j’0 j0 k0

a

b

b

a

c
c

d

d

e

e

f

f

g

g

a) b)

Figure 9: Pseudoknot - (a) degree representation of a standard pseudoknot
- (b) graphical representation of the pseudoknot where the x-axis is labeled
by the primary sequence.

Note that a simple pseudoknot is a standard pseudoknot of degree 3.
The concept of degree in pseudoknots can be also extended to the more

complex recursive PKs, composed themselves of smaller pseudoknotted re-
gions [6, 28].

7.4 C++ algorithmic tests performed on RNA motifs men-

tioned in Section 5

——————— Motif :PDB01069 —————————–
=====================New Block ================
(7,5) - (7,4) - (6,7) - (5,6) - (4,5) - (4,5) -
degree of 7 is 3
degree of 4 is 3
degree of 5 is 4
—- this block represents a pseudoknot —-
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=====================New Block ================
(3,4) -
—- this block represents a regular-region —-
=====================New Block ================
(3,1) - (2,3) - (2,3) - (1,2) -
degree of 3 is 3
degree of 2 is 3
—- this block represents a pseudoknot —-
=====================New Block ================
(0,1) - (0,1) -
—- this block represents a regular-region —-

———– Summary information for Motif :PDB01069 ————————
——
———– Total number of blocks: 4
———– number of PK blocks: 2
———– number of regular blocks : 2
————————————————————————————-
——————— Motif :PKB236 —————————–
=====================New Block ================
(6,0) - (5,6) - (5,6) - (4,5) - (4,5) - (3,4) - (3,4) - (2,3) - (2,3) - (1,2) - (1,2)
- (0,1) - (0,1) -
degree of 6 is 3
degree of 5 is 4
degree of 4 is 4
degree of 3 is 4
degree of 2 is 4
degree of 0 is 3
degree of 1 is 4
—- this block represents a pseudoknot —-

———– Summary information for Motif :PKB236 —————————
—
———– Total number of blocks: 1
———– number of PK blocks: 1
———– number of regular blocks : 0
————————————————————————————-
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