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Abstract

Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA)
molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the
conformational search space.Our structure prediction protocol RAGTOP (RNA-As-Graphs TopologyPrediction)
representsRNA structures as tree graphs and samples graph topologies to produce candidate graphs.However,
for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we
present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D)
tree graphmodels, produced byRAGTOP into atomic structures.We use our related RAG-3D utilities to partition
graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures.
The fragments are edited and superimposed using common residues, full atomic models are scored using
RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our
models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with
respect to experimentally solved structures and compare our results to other fragment assembly programs. For a
set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly
good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These
results provide a good foundation for further work on RNA structure prediction and design applications.

© 2017 Elsevier Ltd. All rights reserved.
Introduction

Ribonucleic acid (RNA) molecules play a myriad of
crucial and essential roles in cellular biology, from
their traditional roles as mRNAs, tRNAs, and rRNAs
[1] to catalysis as ribozymes [2], and gene regulation
as miRNAs and siRNAs [3,4]. Single-stranded RNA
chains can adopt complex three-dimensional (3D)
structures composed of single- and double-stranded
regions that dictate their biological functions. Natu-
rally, their structure–function relationships are of
crucial importance to interpret their activities. Such
information can be utilized for RNA design, with
tremendous potential for therapeutic, industrial, and
biomedical applications.
The availability of high-quality RNA 3D structures is

a prerequisite for RNA structural studies and analysis.
er Ltd. All rights reserved.
The process of RNA structure determination using
experimental methods like X-ray crystallography,
NMR, and more recently cryo-electron microscopy, is
challenging and laborious. In addition, a large percent-
age of available RNA structures are far from perfect in
terms of structural validation criteria like steric-clashes,
sugar pucker, and other geometry measures [5]. The
study of RNA structure using complementary compu-
tational approaches is an exciting area of research that
has the potential to greatly improve our understanding
of the fundamental forces behind RNA structure–
function relationships [6–12].
One effective approach to study RNA structure,

folding, and dynamics is to use coarse-grained models
to represent RNA structures [13]. Instead of working
with the atomic representation of RNA molecules, the
representation of the RNA structure is simplified to
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reduce the number of degrees of freedom. Most
coarse-grained approaches model each residue in
the RNA structure by one [14,15], three [16–21], or
multiple beads [22–27], followed by molecular dynam-
ics, energy minimization, or Monte Carlo (MC) simu-
lations. They may use knowledge-based (derived from
known RNA structures) or force-field based potentials
to score the candidate conformations. Employing
coarse-grained approaches reduces the RNA confor-
mational search space and makes the problem of
sampling different topologies and conformations of the
RNA structure more tractable.
However, the compactness of the RNA represen-

tation and reduced conformational search space also
necessitate another step: generation of atomic
models from the simplified candidate RNA structures.
Fragment assembly is a common approach used in
modeling and is widely used for molecular systems,
for example, in Rosetta [28]. Specialized programs for
RNA, like iFoldRNA [16–18], SimRNA [22,23], HiRe-
RNA [26,27], and the method by Ren and coworkers
[24,25] derive atomic models residue by residue by
using the coarse-grained beads tomap atomic units of
individual nucleotides, followed by energy minimiza-
tion. Vfold3D [20,21] uses sequence and secondary
[two-dimensional (2D)] structure information to build a
coarse-grained model of the RNA molecule from
fragments of helices and loops froma template library,
and then converts this coarse-grained model into an
atomic model residue by residue as above. C2A [29]
builds atomic models using fragments of single- and
double-stranded 2D structure regions from an RNA
3D reference structure database. This database
contains fragments in both coarse-grained and atomic
formats; fragments are selected from this database
based on structural similarity to the given RNA can-
didate (in coarse-grained form), and the energy of the
assembled fragments is minimized.
Apart from the above coarse-grainedmethods, other

fragment assembly-based approaches also build RNA
3D structure from sequence and/or 2D structure.
FARNA/FARFAR [30,31] uses MC simulations and
knowledge-based energy functions to assemble
3-residue fragments into atomic models. Program
3dRNA [32] builds atomic models from fragments of
smallest 2D structure elements (base pairs, hairpins,
internal loops, junctions, and pseudoknots) derived
from the SCOR and RNA junction database, followed
by energyminimization. TheMC-fold/MC-sympipeline
[33,34] identifies nucleotide cyclic motifs for a given
RNA molecule and builds atomic models by assem-
bling the nucleotide cyclic motif fragments from a data
set of RNA structures. RNAComposer [35,36] divides
the givenRNAsequence and 2Dstructure into helices,
hairpins, internal loops, and junctions and uses best
matching fragments from the RNA Frabase dictionary
to build the atomic model.
Our coarse-grained approach relies on the RNA-

As-Graphs (RAG) library that represents RNA 2D
structures as planar, undirected tree graphs [37].
Unpaired regions or loops in the RNA structure
correspond to vertices of the tree graph, and helical
regions connecting the loops correspond to edges
of the graph. Graphs for RNA were introduced in the
1970s by Waterman [38], Nussinov [39,40], Shapiro
and Zhang [41], and others (see recent reviews
[8,42,43]). This simplified representation of the
RNA structure reduces the conformational search
space drastically, and allows us to study RNA
structure using methods and algorithms from graph
theory [11]. We have successfully applied RAG to
predict RNA junction stacking and orientations using a
data-mining, random forest approach [44–46]; simu-
late in vitro selection of RNA molecules [47,48]; and
partition graphs to define recurrent RNA motifs [49].
Recently, we have developed a hierarchical graph

sampling methodology, called RNA-As-Graphs To-
pology Prediction (RAGTOP), to predict RNA 3D
graph topologies corresponding to a given RNA 2D
structure [50]. Our JunctionExplorer data mining
program [44,45] is first used to determine the junction
orientation (co-axial stacking and family) of the
candidate sequence and 2D structure, as classified
in our junction analysis work. The resulting 2D RNA
tree graph is converted to a 3Dgraph, followed byMC/
Simulated Annealing (MC/SA) sampling of 3D graph
topologies using a knowledge-based scoring function.
This function includes bend and twist terms for internal
loops as well as a radius of gyration term. The former
terms for internal loop geometry were recently
enhanced to distinguish internal loops that contain
kink-turn motifs [51]. The candidate graphs selected
after the MC/SA simulations show good performance
with respect to other RNA prediction algorithms in
predicting RNA structure topologies. RAGTOP has
also been successfully applied to predict tertiary
structures of riboswitches [52].
In this paper, we present the next step in the

RAGTOP methodology called Fragment-Assembly for
RNA-As-Graphs (F-RAG): automatic generation of
atomic coordinates of RNA structures from coarse-
grained candidate graph topologies. This task is
performed using fragment assembly, where the can-
didate graph is partitioned into subgraphs, and the best
matching atomic fragments are assembled using
common graph vertices. This assembly is made
possible by our program RAG-3D that employs tree
graphpartitioning techniques [49] andcontainsasearch
tool (also available as a Web-server) for finding similar
3D structural fragments for a given RNA molecule or
motif from a database of RNA structures and substruc-
tures [53]. In our fragment assembly, the atomicmodels
are edited to match sequences and lengths of the
candidate graphs. The generated models are then
scored according to the knowledge-based potential,
and the geometries of the top 20 models are optimized.
Here, we apply F-RAG to build 3D structures for

50 RNA 2D structures, ranging from 17 to 111
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nucleotides. These RNAs contain different numbers
and types of hairpins, internal loops, and junction
motifs. We assess our atomic models with respect to
the experimentally determined structures by calcu-
lating the all-atom Root Mean Square Deviation
(RMSD) and Interaction Network Fidelity (INF) [54].
The latter is a measure of how accurately the
computed 3D structure captures various canonical
and non-canonical interactions present in the refer-
ence structure. We also compare our results to the
Vfold3D program that combines coarse-grained
modeling with fragment assembly, and the 3dRNA
program that uses fragment assembly to combine
atomic fragments of elemental 2D structural motifs.
For this RNA test set, F-RAG produces best atomic
models (chosen from the top 20 scoring models) with
RMSDs less than 10 Å for 46 out of the 50 structures.
On average, our models have better geometries and
less steric-clashes compared to structures generat-
ed using Vfold3D and 3dRNA. These results show
good potential for our RAG approach for the study and
analysis of RNA structures, especially for junction
structures due to good initial junction orientation
prediction using JunctionExplorer [44,45]. Further
improvements can be envisioned by additional struc-
ture refinement to deal with chain breaks, improving
our RNA structure databases, and adding missing
residues to 5′ and 3′ ends and to junctions motifs.
Results

Computational experiments

To assess the results of F-RAG, we generated 3D
atomic models for 50 RNA structures, with 17 to 111
nucleotides, and compared our results to the exper-
imentally solved structures, that is, the reference
structures obtained from the PDB. Our representative
RNA set includes structures with hairpin loops,
internal loops, junctions, and dangling ends of various
sizes. For RNA structures solved using NMR, the first
model was considered as the reference structure.
Table 1 provides the list of 50 RNA structures, along
with a description of their structural complexity.
We apply F-RAG to candidate graph models

predicted by RAGTOP [50,51]. RAGTOP uses the
2D structure as input (here determined by RNAView
[55] using the reference structure). JunctionExplorer is
then applied to predict the junction co-axial stacking
and family. Graph sampling by MC/SA is performed
for 50,000 steps (“random moves,” as recently
optimized [51]). The lowest scoring graph is taken as
the candidate graph (see the subsection titled
“Junction prediction and graph-topology sampling” in
Materials and Methods). This candidate graph is
partitioned into subgraphs by RAG-3D, and the top 10
fragments for each subgraph are computed. For each
candidate graph, we run RAG-3D both with and
without the additional requirement on the atomic
fragment to have the same loop types as the target
graph (see the subsection titled “Graph-partitioning
andRAG-3Dsearch” inMaterials andMethods).Next,
F-RAG is performed separately for each combination
of 1, 2, or 3 subgraphs assembled to form the
complete graph, and atomic models are generated
for each subgraph decomposition.
Starting from a candidate 3D tree graph predicted

by RAGTOP, the computational time required by
F-RAG scales with the number of associated sub-
graphs used in F-RAG. For 1 subgraph (generating a
maximum of 10 atomic models), F-RAG requires 1–
2 min. For 2 subgraphs (generating a maximum of
100 atomic models), F-RAG requires 5–7 min. For 3
subgraphs (generating a maximum of 1000 atomic
models), F-RAG requires 20–30 min.
Among all the candidate models, we select

all models with the highest number of residues
and sort them in increasing order based on scores
using our knowledge-based RAGTOP potential
described in [51]. The geometries of the 20 top
models (lowest scores) are optimized using PHENIX
[56] (version 1.10.1, with sugar-pucker specific
geometry parameters).
The RMSDs for all non-hydrogen atoms computed

with respect to the reference structure for each of the
top 20 models are calculated using PyMOL [57].
Base-pairing and base-stacking interactions are
determined using MC-Annotate [58].
Besides RMSD, we also use other metrics for

comparing RNA structures, as described by Parisien
et al. [54], as also used in the RNA-Puzzles exercise
[59–61]: specificity (PPV), sensitivity (STY), Interac-
tion Network Fidelity (INF), and Deformation Index
(DI). In brief, PPV is the percentage of base-pairing
and stacking interactions in the predicted atomic
model that are found in the reference structure; STY
is the percentage of interactions in the reference
structure that are found in the predicted atomic model.
These measures are calculated as PPV = ∣TP∣/
(∣TP∣ + ∣FP∣), and STY = ∣TP∣/(∣TP∣ + ∣FN∣).
∣TP∣, ∣FP∣, and ∣FN∣ define the number of
base-pairing and stacking interactions present in:
both the reference and the predicted structure
(∣TP∣), predicted structure but absent in the refer-
ence structure (∣FP∣), reference structure but absent
in the predicted structure (∣FN∣). INF combines PPV
and STY to describe the interaction prediction
accuracy of the atomic model (INF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PPV ∗STY
p

).
PPV, STY, and INF take values between 0 and 1, with
a higher number indicating better prediction accuracy.
DI combines the atomic (RMSD) and interaction
prediction accuracy (DI =RMSD/INF), with smaller
values indicating better prediction. The clashscore
(calculated as the number of steric clashes per 1000
atoms [62,63]), and bond-length and bond-angle
outliers were calculated using PHENIX [56].



Table 1. List of 50 RNA PDB files whose 3D structures were generated in this paper

PDB Residues Molecule Structure

2M4W 17 HEV genome bulge Hairpin, internal loop
2MEQ 19 Helix 60 of 23S rRNA Hairpin
2M5U 22 P4 hairpin of CPEB3 ribozyme Hairpin
2N7X 23 miRNA 20bd element Hairpin, internal loop
1RLG 25 C/D box sRNP Hairpin, internal loop
2MIS 26 VS Ribozyme Hairpin, internal loop
2N0J 27 Neomycin riboswitch Hairpin, internal loop
2NCI 28 Metal binding loop Hairpin, internal loop
3SIU 28 U4atac snRNA Hairpin, internal loop
1OOA 29 Protein binding RNA Aptamer Hairpin, internal loop
2IPY 30 H IRE RNA Hairpin, internal loop
2OZB 33 U4 snRNA Hairpin, internal loop
2XEB 33 U4 snRNA Hairpin, internal loop
1MJI 34 5S rRNA fragment Hairpin, internal loop
2M57 35 Domain 5 of group II intron Hairpin, internal loops
4PCJ 35 CUG repeats Hairpin, internal loop
2HW8 36 mRNA bound to L1 protein Hairpin, internal loop
2N6S 36 CssA mRNA thermometer Hairpin
5KQE 36 Telomerase RNA P2ab Hairpin, internal loop
1I6U 37 16S rRNA fragment Hairpin, internal loop
1F1T 38 Malachite green aptamer Hairpin, internal loops
1ZHO 38 mRNA with L1 protein Hairpin, internal loop
2MXL 39 Hairpin from influenza A Hairpin, internal loop
2N6T 42 CssA mRNA thermometer top Hairpin, internal loops
2N6X 43 CssA mRNA thermometer middle Hairpin, internal loop
5BTM 43 AUUCU repeats Hairpin, internal loops
1S03 47 spc Operon mRNA Hairpin, internal loop
1XJR 47 s2 M element of SARS virus Hairpin, internal loops
2MTJ 47 Junction from VS ribozyme Hairpins, 3-way junction
2VPL 48 mRNA with L1 protein Hairpin, internal loop
1U63 49 mRNA with L1 protein Hairpin, internal loop
2PXB 49 SRP from E. coli Hairpin, internal loops
2N4L 53 HIV-1 intron splicing silencer Hairpin, internal loops
2HGH 55 55-mer 5S rRNA fragment Hairpins, internal loop, 3-way junction
1DK1 57 rRNA fragment bound to S15 Hairpins, internal loop, 3-way junction
1MMS 58 58-mer fragment from 23S rRNA Hairpins, internal loop, 3-way junction
1Y39 58 58-mer fragment from 23S rRNA Hairpins, internal loop, 3-way junction
2N3Q 62 Three-way junction from VS ribozyme Hairpin, internal loops, 3-way junction
2MQT 68 U5-PSB domain of leukemia virus Hairpin, internal loops
2N6W 68 CssA thermometer Hairpin, internal loops
1KXK 70 Domain of ai5g group II intron Hairpin, internal loops
2OIU 71 L1 ribozyme RNA Ligase Hairpins, internal loop, 3-way junction
4LCK 75 tRNA-Gly Hairpins, 4-way junction
1P5O 77 HCV IRES Domain II Hairpin, internal loops
3D2G 77 TPP Specific riboswitch Hairpins, internal loops, 3-way junction
2HOJ 79 thi-box riboswitch Hairpins, internal loops, 3-way junction
2GDI 80 TPP riboswitch Hairpins, internal loops, 3-way junction
2GIS 94 SAM-I riboswitch Hairpins, internal loops, 4-way junction
1LNG 97 7S.S SRP RNA Hairpins, internal loops, 3-way junction
2LKR 111 Yeast U2/U6 snRNA complex Hairpins, internal loops, 3-way junction
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Comparison with reference structure

When using fragments from RAG-3D without the
additional requirement of same type of loops, F-RAG
generated atomic models for 49 of the 50 RNA
structures (see Table S1 in Supplementary Informa-
tion for the lowest RMSD and lowest DI atomic
models). For the L1 ribozyme RNA ligase (PDB ID:
2OIU), none of the top atomic fragments from
RAG-3D had the same type of dangling end loop
as required by the target (three strands and two
adjacent helices), so they could not be used by
F-RAG. However, when using fragments produced
by RAG-3D with the additional requirement of same
types of loops, F-RAG generated atomic models for
all 50 structures, with better RMSD and DI values on
average. The atomic models with the lowest DI have
an average RMSD of 4.46 Å and an average DI of
5.90 Å, which is better than the average RMSD (4.60
Å) and DI (6.20 Å) values generated by the former
run. Hence, we use the results from the second run
for comparison.
Figure 1 shows the RMSD, DI, and other metrics

for the lowest DI (of the top 20) atomic model



Fig. 1. Statistics for lowest DI models generated by F-RAG for 50 RNA structures. (a) Number of residues versusRMSD
(in Å). (b) Number of residues versus Deformation Index (DI) (in Å). (c) Number of residues versus Specificity (PPV). (d)
Number of residues versus Sensitivity (STY). See the main text for definitions of these measures.
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generated by F-RAG (see Table S2, and Figs. S2
and S3 in Supplementary Information for compari-
son metrics for the top scoring models). For 45 of the
50 structures, the lowest DI model has an RMSD of
less than 10 Å. We also see that the metrics for
structure comparison of atomic models with the
reference structure do not depend on the total
number of residues in the RNA molecule, but rather
on the structural similarity between the fragment and
the reference structure. For example, for the yeast
U2/U6 snRNA complex (PDB ID: 2LKR), the RMSD
is very high (20.26 Å) because the fragment used to
generate the atomic model had 2 residues missing
from one of the strands of the three-way junction,
and extra residues in the other two strands. Similarly,
for the three-way junction from the VS ribozyme
(PDB ID: 2N3Q), the RMSD is high (17.13 Å) because
the fragment used has 1 residue missing from the
dangling end and has extra residues in the junction
strands. Moreover, most of the atomic models that
have low RMSDs (between 0 and 4 Å) with respect to
the reference structure use fragments from related
RNA structures found by the RAG-3D search. This
highlights RAG-3D's ability to locate fragments
containing similar submotifs as the target structure,
using just 3D tree graphs. Table S3 in Supplementary
Information illustrates the candidate graph and the
lowest DI atomic model generated for 50 RNA
structures by F-RAG.
The average INF values for the lowest DI atomic

models is 0.82, but the INF value is as low as 0.62 for
some structures (see Fig. S1 in Supplementary
Information). This is partly due to missed interactions
present in the reference structure (indicated by low
STY values). These missing interactions are both
canonical and non-canonical in nature. Some of the
missing interactions are single base pairs and
interactions involving residues in the internal loop
and bulges that are ignored in the 2D tree represen-
tation of the RNA 2D structure. Note that single base
pairs are also ignored in the 3D tree graph. The best
atomic model for 11 RNA structures with large chain
breaks (N5 Å distance between O3′ and P atoms of
consecutive residues) are not resolved by optimizing
the geometry.
Of the 50 structures, reference structures of 25 of

them are also a part of the RAG-3D database, that is,
RAG-3D selects fragments from the reference
structures as part of the top 10 fragments, that are
then used as input to F-RAG. Table 2 lists the best



Table 2. Lowest RMSD and DI models for 25 structures
with and without models generated using fragments from
the reference structures

PDB Lowest RMSD model Lowest DI model

With
reference
fragments

Without
reference
fragments

With
reference
fragments

Without
reference
fragments

1RLG 1.034 9.267 1.25 16.14
3SIU 3.480 3.480 4.55 4.55
1OOA 5.005 5.005 7.22 7.22
2OZB 3.291 3.291 3.76 3.76
1MJI 3.246 3.246 4.27 4.27
2HW8 0.450 0.450 0.50 0.50
1I6U 0.532 2.137 0.63 2.59
1F1T 5.060 5.060 7.30 7.30
1ZHO 1.089 1.315 1.21 1.46
1S03 5.088 5.186 6.38 6.66
1XJR 8.025 8.025 10.97 10.97
2VPL 0.428 10.427 0.48 12.55
1U63 3.408 3.408 4.37 4.37
2PXB 5.065 5.065 6.10 6.10
1DK1 1.008 1.060 1.18 1.18
1MMS 0.647 0.647 0.73 0.73
1Y39 0.717 1.018 0.81 1.15
1KXK 0.544 5.759 0.62 7.65
2OIU 1.004 17.768 1.06 23.20
4LCK 0.729 22.498 0.83 30.54
3D2G 1.460 1.460 1.64 1.64
2HOJ 2.504 2.504 3.03 3.03
2GDI 4.976 4.976 6.71 6.71
2GIS 0.919 0.947 1.05 1.07
1LNG 0.858 14.362 0.96 19.43

The bold values indicate a change in the lowest RMSD or DI when
models using fragments from the reference structure are removed.
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RMSD and DI values when we remove such models
from consideration, re-calculate the top 20 atomic
models, and then select the best models with lowest
RMSD and DI values. We see that the lowest DI
values change for 11 out of the 25 structures, with a
significant change (N2 Å) for 6 structures.

Comparison with Vfold3D and 3dRNA

We also compare our generated atomic models to
two other RNA 3D structure prediction programs,
Vfold3D [20,21] and 3dRNA [32]. Vfold3D uses
sequence and 2D structure information to build
coarse-grained models of RNAs from fragments of
helices and loops from a template library, and then
converts this coarse-grained model into an atomic
model, 1 residue at a time, using coarse-grained
beads to map to atomic models of individual
residues. 3dRNA builds atomic models from frag-
ments of small 2D structural elements (base pairs,
hairpins, internal loops, junctions, and pseudoknots)
derived from SCOR and RNA junction databases,
followed by energy minimization. We provide the
same sequence and 2D structure information to
Vfold3D and the 3dRNA server as to RAGTOP and
F-RAG. We ran the Vfold3D program using default
parameters and 3dRNA with fragment assembly and
optimization. All structures generated by the Vfold3D
webserver were considered, and the models with
the lowest RMSD and DI were selected for compar-
ison. Vfold3D generated between 1 and 50 structures
for each RNA. The 3dRNA webserver generates 5
structures by default, and the models with the lowest
RMSD and DI were selected for comparison.
Table 3 lists the best RMSD and DI atomic models

generated by the three fragment assemblies for all
50 RNA structures. Out of 50 structures, F-RAG and
3dRNA generated atomic models for all 50 struc-
tures, whereas Vfold3D generated atomic models for
44 structures. The six structures that Vfold3D fails to
generate atomic models are as follows: three-way
junction from the VS ribozyme (PDB ID: 2MTJ), L1
ribozyme RNA ligase (PDB ID: 2OIU) with a dangling
end with three strands and two adjacent helices,
U4 snRNA (PDB ID: 2XEB) with 1 residue hairpin,
a three-way junction from VS ribozyme (PDB ID:
2N3Q), SAM-I riboswitch (PDB ID: 2GIS) with a
four-way junction, and yeast U2/U6 snRNA complex
(PDB ID: 2LKR). For the 44 common structures,
F-RAG generates the lowest DI atomic model for 25
structures, Vfold3D for 10 structures, and 3dRNA for
9 structures. For the 6 structures for which Vfold3D
does not generate atomic models, both F-RAG and
3dRNA generate the lowest DI atomic model for 3
structures each.Overall, F-RAGgenerated the atomic
model with lower DI values for a larger number of
structures (28 structures) than Vfold3D (10 structures)
and 3dRNA (12 structures).
Figure 2 compares the lowest DI atomic models

generated by all three programs for the 44 RNA
structures generated by all. Recall that DI combines
RMSD and interaction measures. Figure 2a com-
pares RNA structures with only internal loops and
hairpins, and Fig. 2b compares RNA structures with
junctions. For structures with only internal loops and
hairpins, the lowest DI F-RAG and Vfold3D atomic
models have DI values within 1.5 Å of each other for
14 of 35 RNAs; Vfold3D performs better than F-RAG
(N1.5 Å) for 12 structures, and F-RAG performs
better than Vfold3D for 9 structures. Comparing
F-RAG to 3dRNA, the lowest DI F-RAG and 3dRNA
atomic models have DI values within 1.5 Å of each
other for 13 of 35 RNAs; 3dRNA performs better than
F-RAG for 8 structures, and F-RAG performs better
than 3dRNA for 14 structures. However, F-RAG
performs significantly better than other programs for
RNAs with junctions, with F-RAG generating atomic
models with lower DI values for 9 structures
compared to Vfold3D, and for 8 structures compared
to 3dRNA.
Figure 3 compares the PPV, STY (both are

interaction measures, with higher values better),
and clashscore values for the atomic models with
lowest DI values for the 44 structures generated by



Table 3. Comparison of lowest RMSD and DI models generated using F-RAG, Vfold3D, and 3dRNA

PDB Lowest RMSD model Lowest DI model PDB Lowest RMSD model Lowest DI model

F-RAG Vfold3D 3dRNA F-RAG Vfold3D 3dRNA F-RAG Vfold3D 3dRNA F-RAG Vfold3D 3dRNA

2M4W 2.439 3.957 2.16 3.19 4.86 3.45 5BTM 2.906 4.932 2.303 3.37 5.18 2.63
2MEQ 6.367 7.319 0 8.49 9.71 0 1S03 5.088 3.356 5.911 6.38 3.98 7.86
2M5U 2.635 3.078 0 3.12 3.61 0 1XJR 8.025 5.442 9.216 10.97 6.61 14.23
2N7X 3.588 4.94 5.106 4.68 6.29 5.96 2MTJ 13.255 N/A 2.288 21.27 N/A 2.88
1RLG 1.034 1.544 2.637 1.25 1.7 3.76 2VPL 0.428 4.069 1.766 0.48 4.39 2.1
2MIS 2.087 2.311 1.392 2.46 3 1.53 1 U63 3.408 4.295 4.119 4.37 4.93 5.44
2N0J 2.170 1.845 3.889 2.86 2.13 4.68 2PXB 5.065 1.728 1.145 6.10 1.85 1.2
2NCI 9.916 8.229 11.815 12.62 10.82 15.25 2N4L 5.843 3.801 10.898 7.15 4.06 13.08
3SIU 3.480 1.554 1.832 4.55 1.69 1.94 2HGH 3.375 4.045 5.079 3.99 4.38 5.55
1OOA 5.005 5.228 5.455 7.22 6.73 7.16 1DK1 1.008 2.317 3.025 1.18 2.51 3.43
2IPY 1.461 2.353 3.933 1.67 2.64 4.48 1MMS 0.647 2.145 2.746 0.73 2.52 3.82
2OZB 3.291 4.059 6.178 3.76 4.54 8.14 1Y39 0.717 2.733 8.183 0.81 3.2 13.5
2XEB 5.798 N/A 3.456 6.97 N/A 4.07 2N3Q 17.006 N/A 4.528 25.25 N/A 6.56
1MJI 3.246 2.201 4.332 4.27 2.65 5.63 2MQT 8.665 6.129 4.311 11.24 6.93 4.83
2M57 5.169 1.949 2.057 7.75 2.17 2.45 2N6W 5.722 5.86 8.988 7.40 7.45 12.06
4PCJ 1.116 4.514 2.701 1.23 5.47 3.1 1KXK 0.544 5.116 6.561 0.62 5.57 8.46
2HW8 0.450 1.627 1.639 0.50 1.75 1.68 2OIU 1.004 N/A 12.472 1.06 N/A 15.65
2N6S 2.436 3.024 2.685 2.75 3.46 3.16 4LCK 0.729 2.772 7.27 0.83 3.2 9.74
5KQE 8.803 7.793 5.503 10.51 8.97 7.17 1P5O 2.148 4.095 7.353 2.53 4.99 9.96
1I6U 0.532 1.458 2.65 0.63 1.7 3.15 3D2G 1.460 3.916 3.538 1.64 4.36 5.08
1F1T 5.060 6.503 6.484 7.30 9.12 11.4 2HOJ 2.504 17.084 4.703 3.03 20.55 6.45
1ZHO 1.089 1.757 2.033 1.21 1.94 2.16 2GDI 4.976 16.959 3.887 6.71 21.66 4.57
2MXL 8.419 4.116 3.602 12.37 4.72 4.52 2GIS 0.919 N/A 4.224 1.05 N/A 5.17
2N6T 5.351 3.892 6.51 7.72 5.6 8.97 1LNG 0.858 4.86 6.966 0.96 5.82 8.71
2N6X 12.312 14.652 12.411 16.20 20.16 16.54 2LKR 20.262 N/A 19.553 31.07 N/A 32.65

The bold numbers indicate the program that had the lowest value of RMSD or DI. N/A entry in the Vfold3D column indicates that it was not
able to generate an atomic model for that structure.
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all the three fragment assembly approaches. On
average, all three programs have similar PPV
values, but F-RAG and 3dRNA have lower STY
values (0.79) as compared to Vfold3D (0.87),
indicating more missed base-pairing and stacking
interactions. However, atomic models generated
using F-RAG have significantly less steric clashes
as compared to atomic models generated using
Vfold3D and 3dRNA. Most of the steric clashes in the
atomic models generated by Vfold3D and 3dRNA
come from bond-length outliers. That is, two atoms
of a covalent bond are far enough that their vdW
spheres overlap is considered a steric clash. Thus,
our models have better covalent bond geometry,
likely due to optimizing the geometry with PHENIX.
Discussion

In this work, we have presented our RNA graph-
based procedure for generating atomic models from
RAGTOP's predicted coarse-grained 3D graph candi-
dates using fragment assembly. The fragment assem-
bly relies on available tools, such as RAG-3D's search
for common motifs and RAG-3D's partitioning into
subgraphs. Our F-RAG procedure works well com-
pared to other available tools, especially for RNAs with
junctions. Its limitations include a dependence on the
input 2D structure and treatment of pseudoknots,
which are not represented in tree graphs. However,
pseudoknots could be part of the atomic fragments of
the experimental subgraph substructures in the
RAG-3D database and hence our final atomic model.
Furthermore, the RAG-3D database may not contain
atomic fragments to match every subgraph for any
given 2D structure. However, we have not encoun-
tered this problem for the 152 different subgraph
decompositions used for 50 RNA structures in this
paper.
To improve performance of F-RAG further, im-

provements can be considered to our scoring
functions, energy minimization, and fragment library
(greater variety of loop types and number of
residues). We also could improve residue number
editing for junctions and dangling ends. For exam-
ple, the lowest DI atomic model generated for a
three-way junction structure from VS ribozyme (PDB
ID: 2N3Q) has 1 residue missing from the dangling
end; the atomic models generated for another
three-way junction from the VS ribozyme (PDB ID:
2MTJ) and for the yeast U2/U6 snRNA (PDB ID:
2LKR) have 3 and 2 missing residues as compared
to the reference structure, respectively. None of the
top fragments for these structures had the same
number of residues as the target structure. Replac-
ing the junction or the dangling end motifs with a new
motif from the non-redundant data set that has the
required number of residues is not yet implemented



Fig. 2. Comparison of lowest DI models generated for 44 RNA structures by F-RAG, Vfold3D, and 3dRNA. (a)
Structures with hairpins and internal loops. (b) Structures with hairpins, internal loops, and junctions.
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in F-RAG. This is more difficult for junctions, because
in addition to the number of residues, we have to
preserve the co-axial stacking and family of the target
junction. The combination of all three requirements
makes junction motif fitting more restrictive. Imple-
menting the ability to fill in the missing residues one
at a time (rather than replacing the entire loop) is
a better solution and will likely lead to better results
for structures with various loop types. In addition, we
need to implement better ways to remove extra
residues from the junction strands so that they do not
leave chain breaks, which is also true for the above
three examples.
On average, the DI and RMSDs for atomic models

generated by F-RAG are better when using frag-
ments selected by RAG-3D with the additional
requirement for the atomic fragment containing the
same number and types of loops as the target
subgraph. However, there are a few structures
where this is not the case. For example, for the
structure of a hairpin from the influenza A virus (PDB
ID: 2MXL), the lowest RMSD increases from 5.25 Å
to 8.42 Å when using fragments with this additional
requirement. Thus, less similar fragments, with the
additional ability to substitute loop types during the
fragment assembly procedure can lead to models
with better scores. As of now, the RAG-3D fragments
are treated as input to F-RAG. Implementation of
a feedback mechanism between the RAG-3D
search and F-RAG should lead to better integration



Fig. 3. Comparison metrics for lowest DI models generated for 44 RNA structures by F-RAG, Vfold3D, and 3dRNA.
(a) Number of residues versus Specificity (PPV). (b) Number of residues versus Sensitivity (STY). (c) Number of residues
versus Interaction Network Fidelity (INF). (d) Number of residues versus clashscore. See the main text for definition of
these measures.
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between the two components so that we do not
miss fragments that can potentially lead to better
results.
Improvements to our MC/SA procedure and

knowledge-based scoring potential can also be
envisioned. The MC/SA simulation currently samples
only the bend and torsion angles at internal loop
vertices. Addition of junction flexibility (while preserv-
ing the co-axial stacking and family) during theMC/SA
simulation and terms to score different junction
topologies will likely lead to better graph RMSDs and
better atomic fragments. Adding more structural
diversity to the non-redundant data set of hairpins
and internal loops, and using only high-quality atomic
fragments and a non-redundant RAG-3D database
could lead to better atomic models and eliminate the
potential bias of RAG-3D search to return structurally
similar fragments. However, the final model may
contain chain breaks, and thus, further refinement
may be needed before subjecting the atomic models
to energy minimization or molecular dynamics simu-
lations by standard biomolecular programs. Minimiz-
ing the energy of the atomicmodelsmay lead to better
STY values and can resolve chain breaks in the
atomic model that are too large to be fixed by
optimizing only the geometry.
Conclusion

We have described an efficient fragment assembly
approach, F-RAG, to generate atomic models from
coarse-grained3D treegraph candidates generated by
our program RAGTOP. F-RAG relies on our RAG-3D
graph partitioning and search utilities to obtain struc-
turally similar atomic fragments. The combined atomic
models are scored by our statistical scoring function,
and the covalent bond geometry is optimized using
PHENIX. Overall, F-RAG works well when compared
to other programs, especially for RNAs with junctions
due to our initial application of JunctionExplorer to
predict the relevant coaxial stacking and junction family
[44]. The favorable performance on junctions com-
bined with the modularity of our programs provides
good foundations for further work on RNA structure
prediction as well as design applications.
Materials and Methods

This section provides the definitions and back-
ground information on the RAG resource, including
details of our hierarchical approach for sampling RNA
3D graph topologies (RAGTOP), graph-partitioning,
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RAG-3D search tool and database, template loop
library created from the non-redundant database
obtained from Nucleic Acid Database (NDB), and
our F-RAG procedure.

RAG 2D and 3D tree graphs

RNA bases form hydrogen bonds with each other
upon folding of the ribonucleotide chain. The canon-
ical base pairs are GC, AU, and GU wobble. Base
pairs stack on one another to form stems or helices
that are interrupted by single-stranded regions of
unpaired bases called loops. The connectivity of
stems and helices is called the secondary structure
(2D) of the RNA molecule (Fig. 4a). The 2D structure
can be represented in the form of an undirected tree
graph G=(V,E) [64]. The vertices V correspond to
different loops: hairpin loops, internal loops and
bulges (with at least two nucleotides in either strand),
junctions, and dangling ends. A dangling end refers to
exterior loop residues next to stems at the ends of the
RNA sequence. The edges E correspond to helical
stems, with at least two base pairs. Figure 4b shows a
2D tree graphwith 5 vertices for a 57-residue fragment
of rRNA (PDB ID: 1DK1). Our RAG resource
enumerates and catalogs all possible graph topolo-
gies for graphs up to 13 vertices (≈ 260 nucleotides)
Fig. 4. 2D and 3D tree graphs for a fragment of ribosomal RNA
2D tree graph topology. (c) 3D tree graph constructed from the 2D
nucleotide (smaller blue vertex) and helical ends (green vertices).
tertiary structure.
[65], and each unique 2D graph topology is given a
RAG ID by order of the Laplacian second eigenvalue
[66]. In addition, the graphs associated with known
RNA structures are classified as “existing RNA.” The
remaining, hypothetical graphs are classified as
“RNA-like,” or “nonRNA-like” by clustering techniques
[67].
To weigh the graphs by their residue content and

incorporate additional features, we convert the 2D
tree graph into a 3D tree graph with additional
vertices and edges (Fig. 4c). Two vertices are added
to represent the 5′ and 3′ ends for each helix, along
with vertices for internal loops and bulges that
contain less than two nucleotides in either strand.
Isolated single base pairs are ignored. The vertex set
V now consists of vertices representing loops and
helical ends. The edges of the graph now connect
the two vertices representing each helix, or the loop
vertices to the proximal end helical vertices. The
lengths of each edge are scaled by the number of
residues in the corresponding helices and loops [50].
(Note that while the initial 3D graph is in 2D space,
the MC sampling moves transform the tree graph
into 3D space.) An atomic RNA 3D structure can also
be represented using a 3D tree graph (Fig. 4d), by
assigning 3D coordinates to the 3D graph vertices
using the coordinates of the C1′ atom, the C6 atom
(PDB ID: 1DK1). (a) Secondary structure. (b) Corresponding
tree graph by adding extra vertices for internal loop with one
(d) 3D tree graph corresponding to the experimentally solved



Fig. 5. Results of the MC/SA simulation on a fragment of
ribosomal RNA (PDB ID: 1DK1). The initial graph construct-
ed after junction family and stacking prediction is subjected
to MC/SA simulation. The graph shows convergence of the
MC/SA simulations. The two potential candidate graphs are
shown, along with their graph RMSDs from the 3D tree
graph of the reference crystal structure.
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for pyrimidine residues, and the C8 atom for purine
residues as specified in [50].

Junction prediction and graph-topology sampling

The co-axial stacking and family for helical arrange-
ments for RNA junctions are predicted using data
mining tools by JunctionExplorer [44] andmodeled as
graphs by RNAJAG [45]. The JunctionExplorer
algorithm consists of training decision trees of a
random forest procedure [44] on three-way and
four-way junction data derived from known RNA
structures. The decision criteria are based on the
number of residues in the junction strands, adenine
content, and free energy of the proximal base pairs.
JunctionExplorer classifies a three-way junction into
one of three families [68] and a four-way junction into
one of nine families [69].
The next step in the RAGTOP hierarchical ap-

proach is the sampling and selection of candidate
graph topologies that will serve as a target for atomic
coordinate generation [50]. MC/SA sampling is
performed at flexible internal loop vertices of the
3D tree graph. For each move, an internal loop and
one of its adjacent helices is randomly selected for
rotation along a randomly selected axis (x, y, or z).
For local or restricted moves, the angle range is
reduced gradually from 360° to 10°. For random
moves, the range of angle is always full (i.e., 360°). The
SA protocol involves cooling the “system temperature”
by the effective term Ti =c/log2(1+ i/s), where c=1/
(20∗ log2(10)), i is the iteration number, and s is the total
number of MC moves specified a priori. The junction
orientation is kept fixed during theMC/SA simulation to
preserve the co-axial stacking and the junction family
predicted by JunctionExplorer. All sampled graph
topologies are scored by a knowledge-based scoring
function derived from known RNA structures. Terms
include bend and twist potentials of helices around
internal loops, and radius of gyration measurements.
We have recently enhanced our scoring potentials by
distinguishing internal loops that contain kink-turns, by
identifying kink-turn sequence patterns [51]. Following
the MC/SA sampling, candidate graphs are selected
from the accepted graphs as either the graph with the
lowest score or the last accepted graph. Figure 5
shows the candidate graphs (lowest scored and last
accepted graph using the randommoves SA protocol)
selected after the MC/SA protocol on a fragment of the
ribosomal RNA (PDB ID: 1DK1).

Graph partitioning and RAG-3D search

Representing RNA structures as graphs allows
us to use graph-theory algorithms to partition RNA
structures. The RNA 2D and 3D graphs can be
partitioned into subgraphs to study submotifs in RNA
structures. The Laplacian spectrum of the 2D graph of
an RNA structure can be used to represent RNA
graph topology, and graph-partitioning algorithms use
the eigenvector associated with the second smallest
eigenvalue of the Laplacian matrix to partition the
graph into subgraphs [49]. We have found the gap-cut
method (described in Ref. [49]) to be most effective
in partitioning the graph into topologically distinct
subgraphs. By design, we do not modify the junctions
and the neighboring loops.
Graph partitioning is used in our context of fragment

assembly. The RAG-3D database [53] is a set of all
substructures (with associated graph and atomic
fragments) for 1500 representative RNA structures
(obtained from the PDB as of March 2014). It consists
of 7169 graph and atomic fragments corresponding to
51 different RAG topologies. The RAG-3D database
and search tool can be used to search for similar
substructures of any given RNA [53]. A 3D graph is
constructed for the query RNA, and all its subgraphs
are aligned with every 3D graph fragment in the
RAG-3D database with the same RAG ID. The
resulting graph RMSD is measured between the
query subgraph and the graph fragment in the data-
base. For each query subgraph, the RAG-3D search
provides 10 graph fragments with corresponding
atomic fragments in order of increasing graph
RMSDs. In this paper, the query to the RAG-3D
search is the candidate 3D tree graph obtained by
RAGTOP. When searching for matching fragments,
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RAG-3D as reported previously [53] takes into
account the graph topology and the graph RMSD,
but not the loop type and number of strands in the
loops. Thus, for example, a hairpin loop vertex is
indistinguishable from an internal loop vertex at the
end of a subgraph, and the dangling end loop vertex
with three strands and two adjacent helices is
indistinguishable from an internal loop vertex. There-
fore, weadded a criterion toRAG-3D to identify atomic
fragmentswith the samenumber and same loop types
as the target subgraph. Figure 6 illustrates RAG-3D's
partitioning of the candidate graph selected after MC/
SAsimulation for the 7S.SSRPRNA (PDB ID: 1LNG),
Fig. 6. RAG-3D partitioning for 7S.S SRP RNA (PDB ID: 1L
atomic fragments for the candidate graph of the signal recogni
RAG-3D graph partitioning and search (with added requireme
and the top atomic fragments provided by RAG-3D
search.

Non-redundant data set for template loops

In addition to the RAG-3D database described
above, we also use the non-redundant database
obtained from the NDB to create a library of template
loops to be used in the F-RAG procedure. The
non-redundant database was first cited in Ref. [50] in
connection to our derived statistical potential, and an
updated version was used to develop statistical
potentials for k-turn motifs [51]. For the purpose here
NG). Subgraphs and best matching (lowest graph RMSD)
tion particle (PDB ID: 1LNG) are shown as obtained by our
nt for the fragment to have matching loop types).



3599Atomic Coordinates from Graphs by F-RAG
to create a library of template hairpins and internal
loops, the non-redundant list of RNA structures
obtained from the NDB was filtered to remove
structures with incomplete and modified residues.
Duplicate chains and multiple models within the
same PDB file were also removed. All hairpins and
internal loops from the remaining 880 structures
were classified into categories based on the number
of residues and strand sequence (555 hairpin
categories and 395 internal loop categories). One
loop is selected from each category to form the
library of template loops used in F-RAG.
For the F-RAG procedure, one template loop (from

the template loop library constructed above) with the
same number of residues and sequence is selected
for each hairpin and internal loop in the target
structure. If a loop with the same sequence does not
exist, then a score is given to each loop with the same
number of residues (0 for every nucleotidematch, 1 for
every pyrimidine–pyrimidine and purine–purine mis-
match, 2 for every purine–pyrimidine mismatch), and
the loop with the lowest score is selected as the
template loop. Note that such a template loop is only
used in F-RAG if the atomic fragments provided by the
RAG-3D search do not meet all the requirements
listed in the section below.
With the above tools, our F-RAG procedure can be

described as follows:

Details of the F-RAG procedure

The target graph is defined as the candidate graph
obtained from the RAGTOP MC/SA simulation. For
each target graph, we generate atomic models as
follows:

Input and output

We apply RAG-3D partitioning and search utilities to
the target graph to divide it into subgraphs and obtain
the top 10 matching atomic fragments for each
subgraph from theRAG-3Ddatabase. For each hairpin
and internal loop in the target 2D structure, a template
loop that best matches its number of residues and
sequence is extracted from the non-redundant data set
(as described above). The secondary structure, target
graph, subgraphs, top 10 fragments obtained by
RAG-3D, and best matching template loops from the
non-redundant data set all serve as input to F-RAG
(sketched in Fig. 7). The output of F-RAG consists of
the atomic models generated by combining the dif-
ferent atomic fragments, each with a 3D graph, graph
RMSD from the target 3D graph, and score according
to the knowledge-based potential described above.

Algorithm description

Let the subgraphs of the target 3D graph be
numbered in increasing order from the 5′ to the 3′
direction. The algorithm proceeds by calling the
recursive procedure below for each subgraph starting
from the 5′ direction to generate atomic coordinates
for that subgraph. The following steps describe the
procedure to generate atomic coordinates for each
subgraph and to connect its atomic coordinates to the
partially built atomic model. Figure 8 illustrates the
different steps in the procedure.

1. Identify the common subgraph vertex
Determine the vertex of this subgraph that is
common to previous subgraphs, to serve as
the link between this subgraph and the
previous subgraphs. For the first subgraph,
there is no such vertex.

2. Identify the main subgraph vertex
Determine themain vertex for the subgraph. For
a subgraph that contains a junction, the main
vertex is the first junction vertex. For a subgraph
without junctions, the main vertex is the first
internal loop vertex. If neither junctions nor
internal loops exist, themain vertex is the hairpin
loop vertex. Note that the common vertex
identified in step 1 cannot be the main vertex.
Next, divide the vertices of the subgraph into
two sets, the first containing all subgraph
vertices that are 5′ of the main vertex, and the
second set containing all subgraph vertices that
are 3′ of the main vertex.

Then for each atomic fragment of this subgraph,
perform the following steps:

3. Identify the main fragment vertex
Determine the loop vertex in the fragment
graph that corresponds to the main vertex of
the target subgraph, that is, the vertex in the
fragment graph that is of the same loop type
(junction, internal loop, or hairpin loop) as the
main target loop vertex. If there is more than
one loop of the same type in the fragment
graph, choose the vertex with the least dif-
ference in the number of loop residues
between the fragment and the target loop.
Similar to the target main vertex, divide the
fragment graph vertices into two sets, the first
containing all fragment vertices that are 5′ of
the main fragment vertex, and the second set
containing all fragment vertices that are 3′ of
the main fragment vertex.

4. Check fragment type
Compare the two sets of target subgraph
vertices calculated in step 2 to the corre-
sponding set of fragment graph vertices
calculated in step 3 to determine whether the
fragment has the same 5′ to 3′ order of loops
as the target subgraph. If the fragment does
not match the target subgraph, remove the



Fig. 7. Sample F-RAG input for the pentanucleotide AUUCU repeat expansion RNA (PDB ID: 5BTM). The 2D structure,
candidate graph, corresponding subgraphs, and associated atomic fragments from the RAG-3D search that serve as input
to F-RAG are shown. For this 4_1 target, we obtain four subgraph decompositions as shown. For each subgraph
decomposition, we run F-RAG using the 10 lowest graph RMSD atomic fragments for each target subgraph, to obtain
many atomic models. We then select all atomic models that have the same number of residues as the target structure (or
the highest number of residues in case of missing residues), sort them in increasing order of their score (based on our
knowledge-based statistical potential), and select the top scoring models for geometry optimization with PHENIX. In Fig. 8,
we illustrate the steps of F-RAG for one subgraph decomposition, namely III.
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current fragment from consideration and go to
step 3 for the next fragment. If the fragment
matches the target subgraph, proceed to the
next step.

5. Dock fragment graph onto the target subgraph
Dock the fragment graph, along with the
corresponding atomic fragment, onto the
target subgraph, using three corresponding
vertices from the fragment graph and the target
subgraph. The three corresponding vertices
used for docking are the main loop vertex, and
the loop vertices 5′ and 3′ of the main loop
vertex in both the target subgraph and the
fragment graph. If the target subgraph contains



Fig. 8. Steps of the F-RAG procedure for a sample application to subgraph decomposition III (shown in Fig. 7) for the
pentanucleotide AUUCU repeat expansion RNA (PDB ID: 5BTM). The steps of F-RAG illustrated for the two subgraphs are as
follows:main vertex for the target subgraph is identified, respective vertices for docking the fragment graph onto the target graph
are identified, fragments are docked onto the target graphs, and base types and numbers are edited in all loops and helices.
Atomic fragments are superimposed to produce the final model. The colors in the final model indicate the segment's source:
green, fragment of subgraph 1; red, template loops; purple, extra base pair added; and magenta, fragment of subgraph 2.
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only two loop vertices, then the third vertex
is chosen to be the 5′ helix vertex of the main
loop vertex in both the target subgraph and the
fragment graph.

6. Generate atomic coordinates for loop vertices
Generate the coordinates for loop vertices in
the target subgraph using the atomic coordi-
nates of the corresponding loops from the
fragment by the following steps. The atomic
coordinates are generated for subgraph loops
in the 5′ to 3′ direction to maintain connectivity
of the atomic model.
(a) Edit the number and identities of base

pairs in the 5′ helix
Adjust the length of the helix 5′ of the
fragment loop (remove or add base pairs)
to match the length of the helix 5′ of the
target loop. To preserve the connectivity
of this helix with the previously built model,
overlap the 5′ base pair of this helix with
the corresponding base pair in the partial-
ly built model. The base pairs are over-
lapped using three atoms from both base
pairs: C1′ atom of base 1, C1′ atom of
base 2, and the C6/C8 atom of base 1
(depending on whether the first base is
a pyrimidine/purine). Edit the bases in
the helix to match the sequence of the
corresponding target helix.

(b) Edit the number and identity of the loop
residues
Compare the number of residues in each
strand of the fragment loop to the corre-
sponding strand of the target loop. If the
number of residues is equal, edit the
fragment residue to match the corre-
sponding target residue. If the number of
residues in the fragment loop is less than
the target loop, select the template loop
for hairpins and internal loops (taken as
input from the non-redundant data set)
and overlap this new loop on the 5′ helix
generated above. (For junctions, the
atomic model generated will have missing
residues.) If the number of residues in the
fragment loop is greater, remove extra
residues for internal loops and junctions.
For hairpin loops, select the template
hairpin loop. Edit the residues in the
fragment loop to match the target loop
sequence.

(c) Edit the identity of base pairs in the 3′
helices
For each 3′ helix of the target loop (there
can be more than one if the loop is a
junction), edit the identity and length of the
corresponding 3′ helices of the fragment
loop to match the sequence of the
corresponding target helix. If any adjust-
ment to the number of loop residues was
made in step 6b, or a template loop was
used, overlap the 5′ base pair of this helix
on the 3′ base pair of the loop to maintain
connectivity.

7. Apply the recursive procedure to the next
target subgraph
Unless the subgraph is last, go to step 1 for the
next subgraph. For the last subgraph, a full
atomic model for the target 3D graph has been
generated. Construct a 3D tree graph for this
full atomic model (using coordinates of the C1′
atom, C6 atom for pyrimidines, and C8 atom
for purines), and calculate its graph RMSD
from the target 3D graph and its score
according to the knowledge-based potential.
Produce the full atomic model, graph RMSD,
and associated score.
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