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The structure of RNA has been a natural subject for mathematical modeling, inviting many innovative
computational frameworks. This single-stranded polynucleotide chain can fold upon itself in numerous
ways to form hydrogen-bonded segments, imperfect with single-stranded loops. Illustrating these paired
and non-paired interaction networks, known as RNA’s secondary (2D) structure, using mathematical
graph objects has been illuminating for RNA structure analysis. Building upon such seminal work from
the 1970s and 1980s, graph models are now used to study not only RNA structure but also describe
RNA’s recurring modular units, sample the conformational space accessible to RNAs, predict RNA’s
three-dimensional folds, and apply the combined aspects to novel RNA design. In this article, we outline
the development of the RNA-As-Graphs (or RAG) approach and highlight current applications to RNA
structure prediction and design.
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1. Introduction

1.1. Mathematical biology modeling

The complexity and beauty of the biological world has long
been interpreted through a mathematical lens. Mathematical anal-
ysis was crucial to the interpretation of heredity by Gregor Mendel
and to the theory of evolution by Thomas Darwin. The language of
calculus, laid by Isaac Newton and Gottfried Leibniz, is fundamen-
tal for studying many types of motion, from planetary orbits to the
dynamics of biomolecules fundamental for life’s basic processes.
Mathematical and statistical frameworks have been essential for
studying genetic diseases, the spread of epidemics, or the behavior
of cellular ensembles. As biology has advanced in dazzling speed
over the past decades since the elucidation of DNA structure,
opportunities for employing various areas of mathematics to study
biological systems have exploded. Now, mathematics and statistics
are key aspects of biomolecular modeling, genomics, proteomics,
brain research, environmental science, and many other modern
biology and scientific subfields. There is no wonder that mathe-
matical and computational frameworks are considered to be
invaluable for the future health, wealth, and security of our mod-
ern technological society.

In turn, over the past hundreds of years, biological systems and
problems have also motivated theoretical developments in many
fields of mathematics and computation, notably geometry and
topology, algebra, analysis, and computer science theory. In partic-
ular, graph, or network, theory and topology are fields of mathe-
matics that have received much attention as they are applicable
to networks found in numerous fields, from social networks and
cellular connections to economic, and transportation, and security
networks.
1.2. Examples of graphs or networks

A graph (or network) is a discrete object G ¼ ðV ; EÞ with vertices
V and edges E; graphs can be directed or undirected and weighted or
unweighted by their content (e.g., number of bases); simple rules
are needed to translate elements of the network into edges and
vertices.

Examples of graphs or networks are the London tube map (see
http://content.tfl.gov.uk/standard-tube-map.pdf), or a genetic net-
work of budding yeast regulating cell cycle and sporulation (e.g.,
Fig. 1 of [1]).

The algorithm by which Google returns an ordered list of links/
websites to the user’s query keyword (PageRank scheme) is a net-
work: The Internet is one giant graph; each webpage is a node; and
two pages are joined by an edge if there is a link from one page to
the other. PageRank works by the principle that the more links to a
page, the more important it is perceived. Thus, knowing how this
algorithm works can be exploited to get one’s site near the top of
the list.

The well-known ‘‘traveling salesman problem” [2] leads to a
graph: Given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city? This is well-
recognized as ‘‘Non-deterministic polynomial time” hard problem
in combinatorial optimization. It can be modeled as an undirected
weighted graph, such that cities are the graph’s vertices, paths are
the graph’s edges, and a path’s distance is the edge’s length. Today,
such problems are easily solved on modern computers for thou-
sands of cities. However, in 1962, a contest by Proctor & Gambler
offered $10,000 cash prizes (valued to be almost ten times as much
today) to solutions of such a problem with 33 cities. See poster in
http://www.math.uwaterloo.ca/tsp/history/pictorial/car54.html. A
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
detailed solution is provided in [3]; see also solution illustration
in p. 15 of [2].

More recently, a shareability network model was developed to
estimate how car pooling might reduce cost and pollution in
New York City [4]. Traditionally, such ‘‘dynamic pickup and deliv-
ery” problems — where a number of goods or customers must be
picked up and delivered efficiently at specific destination within
time windows (think Uber taxis or FreshDirect grocery deliveries)
— are solved by linear programming. Linear programming involves
a system of linear equations for a set of variables subject to con-
straints. Instead of solving this cab sharing problem by linear pro-
gramming, the researchers in [4] defined a shareability network
model. Each trip in the network is represented by a vertex, and
each shared trip is represented by an edge. Application of the
method to a dataset of 150 million taxi trips in New York City sug-
gested that considerable savings in cost and traffic can be realized
while still keeping the travel time low [4]. Most large cities around
the world today will need to adapt such traffic-cutting measures to
solve current traffic woes.
1.3. Utility of RNA representations as networks

RNA structure has been a natural subject for mathematical anal-
ysis by graph theory. Though similar in chemical composition to
molecular biology’s superstar, DNA, RNA’s single-strandedness
with its 20 hydroxyl group allows this polymer chain to fold upon
itself and form networks of hydrogen bonds, imperfect with
single-stranded loops (see Fig. 1). This hydrogen-bonding network
immediately suggests networks or graphs.

Why study RNA? RNA has always been an important biological
subject due its key role in the central dogma of biology. However,
interest in RNA structure, function, and design has exploded over
the recent two decades with the discovery of noncoding regulatory
RNAs [5,6], including micro RNAs (miRNAs) and long noncoding
RNAs (lncRNAs) that control gene expression through diverse cel-
lular pathways.

RNA’s structural versatility translates to functional wizardry.
RNA can replicate itself, act as an enzyme, and serve as a template
for protein synthesis. Moreover, the crucial relation of RNAs to
many human diseases is also becoming apparent [6–10], opening
new opportunities for disease detection and therapy [11]. For
example, CRISPR RNA technology for gene editing has found
numerous applications in research and medicine, having the
potential to treat genetic diseases and offer novel targeted drug
therapies for human diseases using nucleic acid targets rather than
proteins and other compounds. Besides genomic RNAs, synthetic
RNAs by in vitro selection [12,13] have significantly expanded
RNA’s repertoire and created many opportunities in nanotechnol-
ogy and biomedicine [14–16].

As with protein structural genomics, a primary goal of ribo-
nomics is to catalog all distinct RNA folds across functional RNA
classes to determine sequence/motif/functional relationships
[17,18]. Mathematical modeling has thus played an active role in
advancing this exciting field of RNA science. In the remainder of
this article, we introduce graph representations of RNA and
describe various applications to RNA structure analysis and design
using our group’s RAG (RNA-As-Graphs) framework.
2. RNA 2D structures as graphs

2.1. RNA structure

RNA structure can be described by its primary (nucleotide
sequence), secondary or 2D (hydrogen-bond pairing arrangements
that define double-stranded or stem regions and single-stranded
0.1016/j.ymeth.2018.03.009
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Fig. 1. RNA secondary (2D) and tertiary (3D) interactions. (a) The 2D and 3D structures of the P4-P6 Group I Ribozyme Domain are sketched. (b) Various types of possible 3D
interactions are illustrated.
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loops), and tertiary or 3D interactions (see Fig. 1). RNA pseudoknots
are super secondary interactions defined when hydrogen-bonding
interactions dictate intertwined, or knotted-like regions (Fig. 2),
leading to complex tertiary folds. Though RNA structure organiza-
tion is generally thought to be hierarchical, with its structural
organization occurring in discrete states or transitions from 2D
to 3D interactions [19,20], recent work on ribozymes suggests a
more intricate coupling between 2D and 3D elements, with protein
and/or ions guiding the folding process and dictating the folding
pathways [21,22].

Nonetheless, the well-defined geometric aspects of RNA 2D
structures are good starting points for analyzing and modeling
RNAs, and the network of hydrogen bonds in RNA 2D structures
explains why graphs and graph-like objects have long been natural
objects to represent RNAs (see Fig. 3).
2.2. History of RNA graphs

In 1971, Tinoco and co-workers have introduced what we call
the Tinoco plot (see Fig. 3a). These plots indicate 2D structures of
RNA, as deduced by energy minimization using nearest-neighbor
thermodynamic parameters for the different base-pair terms and
solved by efficient dynamic programming (DP) algorithms [23].
Today, such dynamic programming algorithms and programs for
predicting RNA 2D structures, like RNAfold [24] and NUPACK
[25], though imperfect, are excellent starting points from a given
nucleotide sequence [26].
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
In 1978, Nussinov and co-workers introduced convenient circu-
lar and linked graphs views to easily visualize the base-pairing in
RNAs by arcs: see Fig. 3b [27]. The circular variant is more econom-
ical in usage of space. Both views allow easy detection of pseudo-
knots by the crossing of base-pair connections.

In the same year, Waterman and co-workers pioneered graphi-
cal representations of RNA with the aim of analyzing 2D structures
of tRNA [28]. Waterman offered the first graph-theoretic definition
of 2D structures, planar graph, along with the adjacency matrix.
This matrix describes which edges of the graph are connected to
one another: see Fig. 3c.

An interesting mountain plot was introduced in 1984 by Hoge-
weg & Hesper [29]: the height mðkÞ is the cumulative number of
paired bases at position k. This mountain plot allows straightfor-
ward comparison of structures and inspired a convenient algo-
rithm for comparison of 2D structures (see Fig. 3d).

Soon after, Nussinov developed the ordered labeled tree graph
to compare 2D structures of RNA [30] (see Fig. 3e).

Tree graphs were also used by Shapiro and collaborators to
measure 2D-structural similarities. In particular, they defined the
tree edit distance between two (full) 2D tree structures to quantify
the minimum cost (by insertion, deletion, and replacement of
nodes) along an edit path for converting one tree graph into
another [31,32] (see Fig. 3f).

In 2003, our group has contributed to these exciting advances in
the RNA field by developing a graph-theoretical framework and
web server called RAG (RNA-As-Graphs) to describe and catalog
2D structures of RNA (http://www.biomath.nyu.edu/rag/home),
0.1016/j.ymeth.2018.03.009
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Fig. 2. RNA pseudoknots. (a) RNA pseudoknots are defined by an intertwined form of base pairing, which leads to crossing of base pairs in the circular representation. (b)
Examples of pseudoknotted RNAs are also shown.
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both as planar tree graphs and dual graphs [33] (see Fig. 3g and
Fig. 4). In tree graphs, the 2D elements bulges, junctions, and loops
are represented as vertices, and stems are edges. In dual graphs,
the rules used above to formulate tree graphs are reversed: bulges,
junctions, and loops are edges, and stems are vertices. Dual graphs
are less intuitive to work with but they have the important advan-
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
tage of being able to represent pseudoknots, a motif frequent in
many RNAs. Later, we extended our RAG tree representation into
three-dimensional (3D) space by including additional vertices at
helix ends and junction centers, and scaling edges to represent
helix sizes (see Fig. 5) [34]. Such 3D graph representations may
or may not correspond to the folded RNA structure. That is, our
0.1016/j.ymeth.2018.03.009
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Fig. 3. History of RNA Graphs. See text for details.
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3D RAG graph may be constructed from the solved structure, as
shown in Fig. 5, or predicted by our RAGTOP sampling procedure,
as shown in Fig. 14 (Candidate graph), described below.

The motivation for these RAG representations was not only to
establish a convenient framework for enumerating the universe
of RNA motifs but also for stimulating the prediction of structures
and design of new RNA motifs on modern computers. When motifs
are enumerated on the sequence level, there are numerous possi-
bilities; some examples in the classes of double-stranded (coaxial
helices), double/single strands, and single/single stranded motifs
are sketched in Fig. 1.
3. RAG-RNA-As graphs framework – 2D and 3D graphs, linear
algebra machinery

3.1. Coarse-grained models

The graph models of RNAs described above, developed as early
as the 1970s, by Waterman, Nussinov, Shapiro, and others, as
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
reviewed recently [35,36], provide valuable representations for
analysis. The graph theoretical approaches developed in our lab
aim to extend the graph constructs to RNA simulation, exploiting
the drastic reduction in conformational space by graph
representations.

While it is possible and valuable to simulate RNA at atomic res-
olution, for example to gain insights into ribosomemotion [37] and
catalysis [38], such simulations require enormous computational
resources and expert knowledge in the modeling details. Expertise
is required to treat the solvation and ionic atmosphere of RNA and
to handle force-field issues for atomic RNA models to guarantee
stability and reliability of the results [39,40].

Complementary to these atomic-level simulations and model-
ing studies, various coarse-grained representations of RNA (e.g.,
[41–45]) have shown to be effective in many applications, includ-
ing configurational sampling, structure prediction, and RNA design.
Simplified representations can capture essential features of biomo-
lecules while making computations accessible for a variety of
applications due to a drastic reduction in the number of degrees
of freedom. Historically, united-atom representations for proteins
0.1016/j.ymeth.2018.03.009
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Fig. 4. RAG representations of RNA 2D structures as tree and dual graphs. The associated matrices (adjacency, diagonal, and Laplacian) are also shown, along with the
eigenvalues fkig and the second eigenvector, l2.
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were used to simulate their dynamics (e.g., [46]), and recent coarse
grained models of chromatin have provided insights into chro-
matin architecture [47].

For RNA, the graph framework offers a natural way to coarse
grain the system and employ a large body of graph theory and
topology machinery for structure analysis, partitioning, and
simulation.

3.2. RAG overview

In our RAG representation, we translate RNA 2D structures into
tree and dual graph objects with the following definitions: In tree
graphs, stems are edges, and junctions, bulges, and loops are ver-
tices. We reverse those definitions to define dual graphs [48] (see
examples in Figs. 4 and 5).

For 3D RNA sampling and structure prediction, our extension of
RAG 2D tree graphs [49] considers the size of helices and loops as
well as the parallel/anti-parallel helical arrangements. In our
revised graphs, we add vertices at helix ends to represent parallel
and anti-parallel helical arrangements. Thus, in 3D graphs, a helix
is represented as an edge and two vertices; additional edges
connect new helix vertices to a loop vertex. We also add weights
to each edge to represent helix lengths and size of unpaired
regions.

Two examples of 3D graphs constructed from the known 3D
structures are shown in Fig. 5, superimposed onto the 3D struc-
tures. We also show the corresponding 2D structures, and the pla-
nar tree and dual graphs.. In the 3D graphs, the lengths of the edges
depend on the sizes of the helix, loop, bulge, and junction ele-
ments. Optionally, we can add edges in such 3D graphs to repre-
sent pseudoknot interactions by connecting specific loops/
junctions to other loops/junctions (see Section 5).

In Fig. 5, the RNase P (PDB 1NBS) has 120 nucleotides and 2583
atoms; the corresponding graph has 28 vertices. The 23S ribosomal
RNA (PDB 1S72) of H. marismortu from archaea has 2922 nucleo-
tides and 59021 atoms; our 3D graph of this rRNA has 469 vertices.
Such 3D graph representations provide an efficient computational
framework to model RNA 3D geometry and sample RNA 3D space
by simplified, coarse-grained biomolecular models.
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
3.3. Linear algebra machinery

Besides the pictorial view, the associated linear algebra machin-
ery is useful to describe, compare, and analyze graph objects.
Specifically, we associate the n by n Laplacian matrix L with each
graph, where n = number of vertices, to be the difference between
the diagonal matrix D (which describes the connections from each
vertex) and A, which indicates whether each i; j pair is connected or
not. See Fig. 4 for illustrations of these matrices.

The Laplacian has non-negative eigenvalues
(0 ¼ k1 6 k2 6 . . . kn), and the second eigenvalue k2 is a measure
of overall compactness. We use k2 to order our RNA graphs in
the RAG catalog. We also use the second eigenvector l2 with n
components fl21

; . . . ;l2ng for partitioning graphs [50]. Specifically,
we use the gap cut method to partition tree graphs into subgraphs
[50]: this method divides the graph between the two indices k;m
whose respective components of l2 generate the largest numerical
difference (i.e., jl2k

� l2m j ¼max jl2i
� l2j

jfor i; j 2 1; . . . ;n). This

partitioning method leaves junctions intact [50] (Fig. 6). With com-
puter scientist Louis Petingi, a partitioning method for dual graphs
has also been developed, which divides a dual graph into pseudo-
knot and pseudoknot-free regions [51] (Fig. 6).
3.4. Software and application overview

The main advantage of graphical representations of RNA sec-
ondary structures is that all possible motifs can be described
explicitly by graph enumeration methods [48]. It also makes sys-
tematic (exhaustive) studies possible because the graph motif
space is much smaller than sequence space. We exploit this aspect,
for example, in sampling the conformational space of tree graphs
by Monte Carlo/Simulated Annealing in hierarchical program RAG-
TOP for predicting the global topologies of RNAs [49,34,52–54]. To
date, RAG has been used (see reviews in [55,35,36]) to classify
[33,56–59], catalog [56,57,60], and design RNA motifs [61–64];
partition RNAs into building blocks [60,63,65,51]; and to predict
global RNA topologies [49,34,52,53]. See next two sections for
more details.
0.1016/j.ymeth.2018.03.009
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Fig. 5. Examples of RAG 2D and 3D graphs: For RNAse P (top) and rRNA (bottom), shown are the experimentally determined 2D (left) and 3D (right) structures. The
corresponding 2D RAG tree and dual graphs are also shown (middle), as well as the 3D tree graph superimposed on the experimental 3D structure.
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Software and web servers using RAG have been made available
to the community. The RAG (http://www.biomath.nyu.edu/rag/
home) catalog is available for identifying solved RNAs with graphs
and exploring the universe of RNA motifs. The RAG-3D database
and server are available for RNA motif search and graph partition-
ing (http://www.biomath.nyu.edu/RAG3D/) [65], both useful for
RNA design and analysis.

Our web server RAGPOOLS [61,62] utilizes RAG2D to analyze
and design RNA pools with targeted topological distributions (i.e.,
enrichment of motifs) to help discover new synthetic RNAs by
computational simulation of the in vitro selection procedure (see
Fig. 7, link from the main RAG resource, http://www.biomath.
nyu.edu/rag/home, and program notes).

Our programs JunctionExplorer [59,49] and CHSalign [66]
(http://nature.njit.edu/biosoft/Junction-Explorer/) offer a data-
mining tool to predict and compare junction structures. We devel-
oped a data-mining protocol to predict junction topologies using a
decision tree based on ‘‘features” of the system (loop size, adenine
content, free energy) [59]. Our methods predict coaxial stacking
arrangements and junction family arrangements in 3- and 4-way
junctions with accuracy of 75% and better.
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More recently, RAGTOP exploits RNA 3D graphs for 3D structure
prediction by graph sampling [49,34,52,53]. Here we utilize a
hierarchical approach starting from 2D structure to 3D graphs to
all-atom models using our junction prediction [59], Monte Carlo
sampling, and fragment assembly to translate graph candidates
into all-atom models [54,53].

The next two sections provide details on selection of novel RNA
motifs and their design, and tertiary structure prediction,
respectively.
4. RAG motif enumeration and design

One advantage of graphical representations of RNA secondary
structures is that all possible motifs can be described explicitly
by graph enumeration methods [48].

We have recently enumerated all RNA tree graphs in the RAG
framework up to 13 vertices using graph enumeration techniques,
and clustered them to suggest which hypothetical RNAs, or those
not yet found in Nature, may be RNA-like, that is, good design can-
didates [56]. Thus, for example, all existing motifs are associated
0.1016/j.ymeth.2018.03.009
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Fig. 6. RNA partitioning. (a) Partitioning of tree graphs by the gap cut method [50], and (b) partitioning of dual graphs by articulation points [51].
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with a representative PDB structure in our database. Each RAG tree
is associated with unique label, by vertex number and branch com-
plexity, the latter described by k2.

Thus in Fig. 8, which shows segments of our RAGmotif atlas, red
graphs indicate existing graphs and black graphs indicate hypo-
thetical graphs.
4.1. Clustering into RNA-like and non-RNA-like motifs

To further classify the hypothetical motifs into RNA-like or
non-RNA-like motifs, we employ graph clustering based on fea-
tures of known RNAs. We use, as topological descriptors, trans-
formations of Laplacian eigenvalues (0 ¼ k1 6 k2 6 . . . kn) and
vertex number (n) and a standard clustering algorithm called
partitioning around medoids (PAM) to predict RNA-like motifs
based on training set of known RNAs [56]. Essentially, PAM min-
imizes the sum of distances between two members within a
group and maximizes the sum of distances between the two
groups. The blue graphs in Fig. 8 are those determined to be
RNA-like, while the black colored graphs are those considered
to be non-RNA-like. Similar procedures can be used for dual
graph clustering and classification [64].

Our recent enumeration and classification of hypothetical
graphs into RNA-like and non-RNA-like has shown that RNA-like
structures provide good candidates for RNA design, better than
those classified as ‘‘non-RNA-like” [56]. Specifically, 10% of our
RNA-like versus only 4% of non-RNA-like graphs have been exper-
imentally determined since 2011.
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4.2. RAG-3D for graph partitioning and motif search

How could these hypothetical RNA-like motifs be designed?
That is, what sequences could be created that will fold onto these
desired motifs?

We have developed tools for this purpose using our database
and web server ‘‘RAG-3D” [65]. RAG-3D extends the RAG catalog
to 3D graphs (http://www.biomath.nyu.edu/RAG3D/) and links
solved PDB structures to these 3D graphs. Moreover, in response
to a query RNA structure or PDB file, RAG-3D searches for similar
blocks in the database and partitions any solved RNA, represented
as graphs, into building blocks, or modular units.

For example, the signal recognition particle 7S.S SRP (PDB ID
1LNG) corresponds to the 7 3 graph. RAG-3D can partition this
RNA graph into 9 subgraphs that contain various 6 3, 6 2, 5 2,
4 2, 3 1, and 2 1 graphs (Fig. 9). Our partitioning requires that all
junctions remain intact in the subgraphs. Similarly, RAG-3D’s
search tool can identify and rank matching structures to query
subgraph (as PDB structures and associated coordinates).

These tools immediately suggest how to design RNAs with
desired novel motifs: sequences and 3D structures corresponding
to the different subgraph fragments can be assembled together.

Since each subgraph has a corresponding known sequence
[65], the idea is to piece them together to build the candidate
atomic model. In our previous work on this concept, we used
manual piecing together of building blocks to design 10 RNA-
like motifs containing pseudoknots, described as dual graphs
(see Fig. 10). For each design candidate, we partitioned the graph
into two subgraphs, both of which have been solved. Then we
0.1016/j.ymeth.2018.03.009
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Fig. 7. The in silico RAGPOOLS approach to simulate the experimental in vitro selection process for novel RNA motifs. Using ‘mixing matrices’ [61,62] we can specify which
graph motifs to blend into the selection pools to help obtain desired RNA motifs. The resulting sequences are ‘folded’ using available 2D algorithms and filtered to obtain the
desired products.
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pieced together the sequences for the two subgraphs, and tested
the resulting combined sequence’s ability to fold onto the target
fold by applying 2D prediction algorithms [63]. The design exer-
cise proved its utility: Since 2014, at least half of the candidate
models were solved experimentally, as shown in the last column
of Fig. 10, with significant correlations in the designed sequences
[35].

4.3. Automated fragment assembly for design

Very recently, we have developed an automated ‘‘fragment
assembly” protocol to piece these subgraphs (see Fig. 11) [54].

The fragment assembly approach, based on empirical potentials
derived from available experimental structures, has proven suc-
cessful for predicting tertiary structures of proteins from sequence
using the Rosetta program [67]. Significantly, in recent studies
even side chains can be predicted in atomic resolution. As evident
from the superb performance in the RNA-Puzzles initiative [68],
Rosetta’s adaptation for RNA by Das and co-workers has benefited
from the inclusion of chemical mapping information tailored for
RNA [69].

Starting from the RNA-like graph motif, we first extract 2D sub-
motifs of existing graph IDs. Second, we extract all-atom fragments
catalogued with the same graph ID as the existing graph ID from
the RAG-3D database (see Fig. 11). We select the fragments that
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
have the required number of internal loops and hairpins. Third,
the two fragments are assembled by overlapping the base pairs
that flank the common loop between the two fragments. Fourth,
the 3D tree graph is constructed from the final all-atom model
and scored based on our RAGTOP statistical potential (described
below) [53].

To illustrate its application, we summarize in Fig. 12 results for
6 candidate RNA-like motifs. For each target RNA-like motif, the
top 400 (top 200 each from two different design runs) scoring can-
didate models/sequences (after removing models with chain
breaks) were subjected to in silico folding by programs RNAfold
[24] and NUPACK [25]. The yield in the figure indicates the number
of sequences out of the top 400 that fold onto the desired fold as
determined by both RNAfold and NUPACK. Preferences for the
desired fold are indicated by denoting the fragments that produce
the highest number of sequences with the desired fold. The num-
ber in the parenthesis indicates the number of sequences that fold
onto the desired fold with that fragment.

Clearly, this design protocol provides a large number of candi-
dates for further analysis. These preliminary results indicate pro-
mise for our design protocol, as recently described for six target
sequences, including preliminary experimental testing [64].
Though the main ingredients are now in place, further steps need
to be developed to optimize and select the most promising candi-
dates and subject them to experimental testing.
0.1016/j.ymeth.2018.03.009
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Fig. 8. Segments of RAG’s motif atlas, with classifications into existing, RNA-like and non-RNA-like motifs as determined by clustering [56].
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5. RAGTOP for 3D structure prediction

5.1. RNA structure prediction difficulties

RNA structure prediction is challenged by a combination of fac-
tors, including: limited structural information (compared to pro-
teins), enormous structural repertoire, RNA’s high flexibility and
structure dependence on bound ions and proteins, and the diffi-
culty of predicting global interactions a priori.
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
An RNA building block has 7 degrees of freedom corresponding
to the nucleic-acid backbone torsions plus 2 degrees of freedom for
the base torsions. In molecular dynamics simulations, the sensitive
behavior of RNA base-pair stability and RNA geometry to torsional
angle parameters has been noted, and structural distortions are
common [40]. Another difficulty involves protein-binding effects.
These can induce significant distortions, such as helical bending
of loops. Together with the multiple conformations that RNAs
can adopt, for example in riboswitches, these combined problems
0.1016/j.ymeth.2018.03.009
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Fig. 9. RAG partitioning of the signal recognition particle into subgraphs.
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challenge the modeling and structure prediction of RNA structure
and its interactions.

Though lagging behind protein prediction, RNA 3D structure
prediction has improved in recent years due to a combination of
experimental and computational advances. Programs for predict-
ing RNA 2D structures, though imperfect, are excellent starting
points from a given nucleotide sequence [26]. But predicting how
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
these 2D elements fold in 3D is challenging. As we have recently
found in our comparative assessment of available 3D folding pro-
grams for RNA [70,55], automatic 3D prediction methods remains
difficult for large RNAs. In particular, breakthroughs are needed
to arrange helical elements and determine long-range contacts.

Current approaches for RNA 3D structure prediction include
those that have worked for proteins, including Rosetta-based sam-
0.1016/j.ymeth.2018.03.009
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Fig. 10. Ten designed dual graphs [63].
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pling, which assembles short fragments from existing RNA struc-
tures, like FARNA [71–73]; comparative modeling approaches
based on RNA homology [74]; and coarse-grained approaches like
MC-Sym [42], NAST [75,43], or others (e.g., [44,45]).

To stimulate advances in RNA modeling, a new exercise was
founded by Eric Westhof called RNA-puzzles. Already, RNA-puzzles
has demonstrated a fundamental difficulty in our ability to handle
long-range RNA interactions, which are very difficult to predict a
priori [76,68].
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
5.2. RAGTOP protocol

The assembly of global interactions is the focus of our recently
introduced hierarchical RNA graph sampling approach for topology
prediction called RAGTOP [49,34,52] (see sketch in Fig. 13). RAG
exploits coarse-grained RNA graphs for efficient sampling of the
associated conformational space.

Junction family prediction. Our program RAGTOP begins with
a 2D RNA structure, which can be provided experimentally or pre-
0.1016/j.ymeth.2018.03.009
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Fig. 11. Sketch of the fragment assembly approach.
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dicted using various in silico programs. To provide a good initial
RNA graph for sampling, we apply our bioinformatics/data-
mining tool called JunctionExplorer to predict initial junction
arrangements [59].

This is made possible by analyzing and classifying all existing
junctions. Building upon Westhof’s initial classification of 3-way
junctions [77], we have analyzed 207 RNA junctions in the NDB
that ranged from 3-way to 10-way junctions [78] (see Fig. 13 later,
quadrant 1).

Then, our random forest data-mining protocol [59] predicts
junction topologies using a decision tree based on ‘‘features” or
vectors which we define and train on known RNAs. These feature
vectors involve loop size, adenine content, and free energy of
stacking criteria. These features work because small loop size
enhances the probability of coaxial stacking; adenines in loops
tend to form A-minor motifs; and free-energy parameters account
for stacking forces between base pairs at the end of helices. The
trained random-forest decision tree protocol [59,49] is then
applied to each initial 2D graph. The resulting 2D graph is then
extended into 3D directed graphs to incorporate sequence lengths
of the loops and junctions.

MC/SA with statistical scoring function. This 3D graph is then
subjected to a Metropolis Monte Carlo(MC)/Simulated Annealing
(SA) sampling procedure guided by a statistical scoring function.
The Metropolis algorithm generates a series of conformations to
sample the canonical ensemble of a system (constant number of
particles, temperature T, and volume) so that the sequence of
states tends to a lower energy region (see details in [79]). Essen-
tially, each state depends only on the prior state, and these are
related to one another by a specified perturbation. A new state X 0

that leads to lower energy than the prior state X is always accepted,
while a state that increases the energy (i.e., DE ¼ X 0 � X > 0) is
accepted with probability p ¼ expð�bDEÞ, where b ¼ ð1=kBTÞ and
kB is Boltzmann’s constant. In practice, this probability is achieved
by comparing p to a uniformly-generated number ran between
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
zero and 1. If p > ran, we accept X0 as the new configuration in
the sequence; otherwise, we generate another trial configuration
and repeat the process. In our context, we perturb each graph by
small changes in bend and twist angles. The SA component helps
accelerate convergence further by decreasing the effective temper-
ature T with the MC iteration with a well chosen function that
works in practice [34,53].

Such an MC procedure can be applied to any system where the
potential energy or score of each configuration can be evaluated,
for example by empirical functions using a standard all-atom or
coarse-grained force field (see [79]), or by a statistical scoring
potential. The latter involves collecting a set of solved structures,
analyzing their properties of interest as a function of internal geo-
metric variables, and then deriving probability distribution func-
tions that describe the likelihood of any given state.

In our case, we have collected a database of high-resolution
non-redundant RNA structures, and divide all the loops in the
database into families L;R, where L 6 R describe the number of
bases in each single-stranded region of the loop (see Fig. 13,
quadrant 2). Many L=R families are possible, but based on
observed RNA structures, we use 27 families L 6 R:
0=1;0=2;0=6þ;1=1; . . .6=6þ, where the plus sign indicates that
the number of nucleotides can be equal or greater than specified.
We have found that the bending and twisting angles about these
loops depend on L and R.

We analyze such information at a certain bin size (e.g., 36 bins,
with bin size of 10 degrees), and smooth the probability distribu-
tion if needed. Then the probability that a certain bending angle
h (or torsion angle s) exists is simply the number of loop entries
in that bin divided by the total number of loops in the sample:
Pr ðhÞ ¼ Ni=N where Ni is the number of internal loops with h in
that bin, and N is the total internal loops in the dataset. This
structure-derived probability Pr (h) can be compared to the proba-
bility that an angle will be in that bin, which is, for example,
Prandom ¼ 1=36 for 10-degree bins. Applying Boltzmann statistics
0.1016/j.ymeth.2018.03.009
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Fig. 12. Illustration of results from design of six RNA-like motifs by fragment assembly [64]. For each RNA-like motif, shown are the two fragments we piece together based
on known RNAs, the yield of the intended motifs as determined by two in silico programs, and the trends we identified for obtaining that fold.
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to internal loop angles, we derive the free-energy score for internal
loop angles to be:

DGðhÞ ¼ �kBT lnðPrðhÞ=PrandomÞ:
This is the free energy term for bending that is used in our RAGTOP
MC/SA process.

An identical form is used for the torsion angles ðsÞ for the same
dataset and bins, resulting in our statistical scoring potential:

DGinternal ¼
X

i

DGðhiÞ þ DGðsiÞ:

In addition to these two internal potential terms for bending
and twisting terms about internal loops, our scoring function DG
also includes a radius of gyration term for the whole RNA (DGRg ),
and an optional pseudoknot term to restrain the 3D structure to
a length corresponding to a pseudoknot edge (DGpk). The Rg term
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
helps drive overall compactness of the RNA, and the pseudoknot
term helps maintain in 3D a pseudoknot interaction known from
the 2D structure.

Our analysis has shown that radii of gyration of RNA 3D graphs
increase logarithmically with the RNA sequence length L and
decrease logarithmically with the vertex number V:

RgðL;VÞ ¼ C1 lnðLÞ þ C2 lnðVÞ þ C3:

Here, C1;C2, and C3 are constants fitted to the RNA data to define the
target Rg , namely Rg , for a given RNA graph with length L and V
vertices.

Then, we define the resulting potential term that drives the
system with corresponding Rg to the target value Rg as:

DGRg ¼ jRg � Rg j:
0.1016/j.ymeth.2018.03.009
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Fig. 13. Sketch of the RAGTOP hierarchical sampling approach [49,34,50,53]. 1. Initial junction topology prediction; 2. MC sampling of 3D graphs scored by a statistical
scoring function with components for bend, twist, radius-of-gyration, and pseudoknot terms; 3. clustering of generated graphs to identify candidate graph; and 4.
determination of atomic models from the candidate graph by our fragment assembly algorithm using RAG-3D subgraph partitioning.
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Optionally, to model pseudoknots, we add a similar term for the
pseudoknot edge, restraining it to some reasonable value, D.

A recent addition involves dividing the bending term further
into k-turn-like bends and non-k-turn-like bends [53]. Such a divi-
sion is reasonable because in the long term we would like to define
the geometry of an RNA tertiary structure in terms of its con-
stituent sequence/structure motifs, Our tailored kink-turn motif
term recognizes these motifs by a consensus sequence [53].
Kink-turns are a widely distributed motif in large RNA/protein
assemblies like the ribosome and in other RNAs like riboswitches,
snoRNAs, and more [80,81]. They direct and sculpt the trajectory of
helical segments within the RNA by forming unusually large angles
of around 50� between the two axes of the helical arms that are
stabilized by two cross-strand A-minor interactions. Thus, the
sequence signature of a standard k-turn involves a duplex RNA
with a short bulge followed by G-A and A-G base pairs. The associ-
ated A-minor motifs involve nearby residues.

The Monte Carlo moves are implemented by local rotations
around loops, while keeping the predicted junction family intact.
We have considered various MC protocols, in which angular dis-
placements are randomly sampled from the full 2p range, or alter-
natively restricted, so that the range is lowered with the MC
Please cite this article in press as: T. Schlick, Methods (2018), https://doi.org/1
iteration, to help convergence. We have found both to work and
have recently employed a random move protocol combined with
Simulated Annealing to guide convergence [53,54]. The 3D predic-
tions by RAGTOP depend on the quality of the initial 2D structure.
The better the 2D structure is (from experiment or from computa-
tional predictions), the better the final result. In general, our results
are competitive with other approaches and work especially well
for RNAs with junctions [34,52–54]. This is because our junction
assembly component helps bring essential tertiary elements in
space in the right orientation; the tailored kink-turn potential for
loops helps obtain reasonable bend orientations [53]; the
pseudoknot-like term guides the structure assembly of RNAs with
pseudoknots [52], and automated fragment assembly generates
reasonable atomic models, especially for RNAs with junctions
[54]. See Fig. 14 for examples of RAGTOP results from graphmodels
to full atomic models [54].

Naturally, many improvements can be envisioned, concerning
the statistical potential and the MC moves. For example, other
sequence-dependent features could be incorporated into the MC
scoring function, like the k-turn bend potential, and different stems
within junctions should be moved with respect to one another to
model RNA’s natural flexibility. The handling of pseudoknots could
0.1016/j.ymeth.2018.03.009
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Fig. 14. Examples of RAGTOP results from graph models to full atomic models.
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also be made more rigorous using dual graphs, but the latter
requires new machinery for graph scoring and sampling
altogether.
6. Conclusions

6.1. Biomolecular simulations as a field on its own right

Impressive developments in both computational technology
and simulation algorithms have led to rapid advances in the
biomolecular modeling field [82]. These enhancements have ren-
dered computational biology a valuable field on its own right
rather than a mere accessory to experimental structure determina-
tion and analysis [83].

Because of emerging discoveries of RNA’s structural and func-
tional versatility, including exciting RNA-based CRISPR applica-
tions in biology, engineering, and medicine, RNA is rising to a
superstar status. The related problems and applications offer many
incentives and opportunities for RNA research, including computa-
tional approaches. In silico strategies, in particular, have the poten-
tial to offer systematic solutions to challenging structure
prediction and design problems [84,85].

The typical atomic-level modeling of biomolecular with stan-
dard force fields [79] can address many problems, but the compu-
tational complexity of nucleotide/nucleotide contacts increases
quadratically with the sequence size. The difficulties in modeling
floppy RNAs with solvent and salt are also well appreciated [40].
Thus, as emphasized in this chapter, reduced representations, such
as offered by coarse graining using graphs to model RNA 2D and 3D
structures, can help define and solve problems with a fresh per-
spective. The successful applications described with the RAG
approach involve structure annotation, motif enumeration and
classification, RNA partitioning, structure prediction, and RNA
design. All these aspects exploit the power of the graph represen-
tations to enumerate RNA motifs; employ associated linear algebra
tools for graph partitioning, clustering, and classification; sample
RNA configuration space efficiently to predict tertiary topologies
of RNAs from the 2D structure; and combine all these tools to
design novel RNA motifs. Of course, a combination of methods
and approaches could always be fruitful, including the incorpora-
tion of experimental data (such as chemical reactivity) in the mod-
els [85], and iterative experimental testing and modeling of the
designed RNA. It is particularly exciting that our recent in silico
design predictions were confirmed by experimental testing by
chemical reactivity data [64].
6.2. Future challenges with RAG

Ongoing work with the RAG approach involves applying the
dual-graph partitioning algorithm [51] to the full library of dual
graphs representing RNAs up to 9 vertices (98 different graph
topologies for 1785 RNA secondary structures) [86]. Using the
Hopcroft and Tarjan algorithm for identifying non-separable graph
components in a connected graph, our algorithm uses the adja-
cency matrix of the graph as input and determines articulation
points. Such vertex points v are defined if G� v (where G is the
dual graph of the RNA secondary structure lead to a disconnected
graph. In this way, we define all subgraphs, or building blocks, of
the dual graph library that contain no such articulation points
(non-separable units). Interestingly, preliminary work suggests
that several dual subgraphs are common to the entire set of dual
graphs. Work is continuing to analyze the biological features of
these subgraphs.

Another interesting application involves evolutionary analysis
of organism complexity using graphs. Analysis of ribosome struc-
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tures from different species, from archea to human, has been used
by Williams and coworkers to detect evolutionary relationships
[87]. Ribosomal RNAs catalyze the synthesis of proteins essential
to life. Ribosomal RNA structures, both secondary and tertiary,
are thus highly conserved, and a common structural/functional
core has been identified. This core evolves in complexity as the
organism’s complexity increases from archea to human. However,
detecting such relationships using detailed 2D networks is far from
easy. It is possible that graph analysis using partitioning of both the
small and large ribosomal RNA subunits for several organisms will
help identify core structural features as well as branching patterns
with evolution. These subgraph patterns could then be connected
to other evolutionary techniques to make biological inferences.

Exciting applications and extensions of graphs to many areas of
biology can be envisioned in the near future. Mathematical and
computer scientists, in particular, may find intriguing opportuni-
ties to contribute to the exciting field of RNA structure and design.
Together, the experimental and computational communities will
undoubtedly continue to work together to analyze, interpret, pre-
dict, and design RNA molecules and their complexes and to pursue
important biomedical and engineering applications.
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