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S1 Linear and quadratic least square regression for ex-

tracting graph features

As mentioned in Subsection 2.3 of the main paper, we refer to two-dimensional points
(1, λ2), (2, λ3), ..., (n−1, λn) as ‘eigenvalue points’ and points (1, λ22), (2, λ

2
3), ..., (n−1, λ2n) as

‘squared eigenvalue points’. In this section, we perform both linear and quadratic regression
(using functions in Matlab as mentioned in Subsection 2.4.4 in the main paper) on eigenvalue
and squared eigenvalue points to determine which is a better fit.

To visualize the linear and quadratic functions fitted to eigenvalue and squared eigenvalue
points, graphs with the largest number of vertices n are suitable candidates, as they provide
more data points for least squared regression. For a quantitative assessment, we calculate
and compare the mean squared errors (MSE) of both the linear and the quadratic function
returned by least squared regression. For each vertex number, we take the average MSEs
over all graphs. The analysis is done for tree and dual graphs independently.

Figure S1 shows the linear and quadratic fit for eigenvalue and squared eigenvalue points
for two representative tree graph topologies. Visually, there is not much difference between
linear and quadratic fit for eigenvalue points, but the quadratic curve is clearly a better for
for squared eigenvalue points. In Figure S1b, an interesting distribution of eigenvalues can
be observed. There are 11 repeated eigenvalues of 1, which results in a poor fit for both
linear and quadratic regression. Similar observations are made for every vertex number: the
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squared eigenvalues of the some graphs are better approximated using quadratic polynomial
regression, while some graphs tends to have many repeated eigenvalues of 1, so that neither
linear nor polynomial fits work well.

Figure S2 shows the linear and quadratic fit for eigenvalue and squared eigenvalue points
for two representative dual graph topologies. Similar to tree graphs, quadratic curve is
clearly a better for for squared eigenvalue points. Therefore, our conclusions for both tree
and dual graphs are similar: using quadratic polynomial regression for squared eigenvalue
points is a better choice as it leads to no change or an improvement in the fit.

For a quantitative analysis, Tables S1 and S2 show the MSEs for both linear and quadratic
regression for tree and dual graphs, respectively. The MSEs for both tree and dual graphs for
eigenvalue points does not change much between linear and quadratic regression. However,
the quadratic regression obtains significant reduction in MSEs for squared eigenvalue points,
also shown in Figure S3.

Based on the above analysis, we decided to use only linear regression for eigenvalue
points, combined with either linear or quadratic regression for squared eigenvalue points for
extracting features of graph topologies (to be used with clustering algorithms, as described
in the main paper).

S2 Analysis of linear dependency of variables

As described in Section 2.3 of the main paper, we derive 4 linear variables (using linear
regression) and 5 quadratic variables (using both linear and quadratic regression) to represent
each tree and dual graph topology. To analyze the linear dependence of variables, we plot
one variable against another.

The four linear variables are:

1. x1: scaled slope of the fitted line using linear regression for eigenvalue points drawn on
a plane.

2. x2: y-intercept of the fitted line using linear regression for eigenvalue points drawn on
a plane.

3. x3: scaled slope of the fitted line using linear regression for squared eigenvalue points
drawn on a plane.

4. x4: y-intercept of the fitted line using linear regression for squared eigenvalue points
drawn on a plane.

The five quadratic variables are:

1. x1: scaled slope of the fitted line using linear regression for eigenvalue points drawn on
a plane.

2. x2: y-intercept of the fitted line using linear regression for eigenvalue points drawn on
a plane.
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3. x3: coefficient a of the fitted polynomial ax2 + bx + c using quadratic regression for
squared eigenvalue points drawn on a plane.

4. x4: coefficient b of the fitted polynomial ax2 + bx + c using quadratic regression for
squared eigenvalue points drawn on a plane.

5. x5: coefficient c of the fitted polynomial ax2 + bx + c using quadratic regression for
squared eigenvalue points drawn on a plane.

Figure S4 shows the plots of linear variables for tree graphs that indicate that variables
x1 and x2 are linearly dependent on each other, so are variables x3 and x4. Therefore, there
are two linearly independent linear variables for tree graphs. Figure S5 shows the plots
of quadratic variables for tree graphs that indicate that variables x1 and x2 are linearly
dependent on each other. Therefore, there are four linearly independent quadratic variables
for tree graphs.

For dual graphs, Figure S6 and Figure S7 shows the plots of linear and quadratic variables,
respectively. As can be seen from the figures, all four linear variables and all five quadratic
variables are linearly independent.

S3 Clustering algorithms

We use three clustering algorithms, PAM, k-means, and k-NN, to classify all tree and dual
graph topologies in our RAG library into two categories/clusters: ‘RNA-like’ (graph topolo-
gies likely to correspond to yet undiscovered RNA structures) and ‘non RNA-like’ (graph
topologies unlikely to correspond to RNA structures). Tree and dual graph topologies are
clustered separately. For each clustering techniques, N denotes the total number of graph
topologies (2286 for tree graphs and 110,664 for dual graphs, as graphs with 2 vertices are
not considered), and K = 2 denotes the number of clusters. Of the three clustering tech-
niques, PAM and k-means are unsupervised clustering algorithms as they do not require
any training data. In contrast, k-NN requires training data, hence is a supervised clustering
algorithm.

S3.1 Partitioning Around Medoids (PAM)

The PAM algorithm to divide N points into K clusters works as follows:

1. Of N data points, randomly choose K points as medoids.

2. Assign each of the N−K data points to the closest medoid using the euclidian distances
between the graph features extracted as described in Subsection 2.3 of the main paper.

3. Compute the cost function as the sum of the euclidian distances of each point from
their corresponding medoid.

4. For each iteration of the PAM algorithm:

• For each medoid m and non-medoid o:
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(a) Let o be the new medoid and m be the non-medoid. Repeat steps 2 and 3.

(b) If the cost function decreased, keep the new medoid and the associated clus-
ters.

(c) If the cost function increased, restore the medoid at m and non-medoid at o.

After several iterations, the algorithm should converge to an optimal solution for cluster
medoids.

S3.2 K-means clustering

The K-means algorithm to divide N points into K clusters works as follows:

1. Choose K initial cluster centers. The cluster centers can be chosen as any K data
points or randomly initialized.

2. Assign each of the N data points to the closest center using the euclidian distances
between the graph features extracted as described in Subsection 2.3 of the main paper.

3. Compute the new cluster centers as the average of the data points in the corresponding
cluster.

4. Repeat steps 2 and 3 until cluster centers do not change.

S3.3 k-Nearest-Neighbors (k-NN)

The k-NN clustering algorithm divides N points into K clusters, using the cluster identities
of its k nearest neighbors. For our purposes, K = 2: RNA-like and non-RNA-like. We
use the set of existing RNA topologies as training data for the RNA-like cluster and then
randomly select an equal number of hypothetical graph topologies as part of the training
data for the non-RNA-like cluster.

For each point not in the training set, get the clusters for its k nearest neighbors from
the training set. The point is then assigned to whichever cluster has the highest nearest
neighbor count.

S4 RNA structural dataset details

RNA 3D structures available on or before August 31, 2018 on the Protein Data Bank (PDB)
were downloaded, which included multiple files for parts of large structures. The 4042 down-
loaded RNA structures were separated into 9019 structure files or “Integrated Functional El-
ements” (i.e., single chains or multiple strongly base-paired chains) and grouped into “equiv-
alence classes” (based on RNA molecule type, its sequence, structure, and species) available
on the Bowling Green State University (BGSU) RNA site (http://rna.bgsu.edu/rna3dhub),
version 3.37, August 31, 2018 [1]. Same rules were used to separate chains in RNA struc-
tures missing from the BGSU RNA dataset but present in the list download from the PDB.
Equivalence classes were combined manually if necessary. Only standard RNA residues (A,
U, G, C) and modified RNA residues (listed as “RNA linking”) were retained in the PDB
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files, and all ligand and water molecules were removed, along with any protein or DNA
residues. Residues in structures with insertion codes (residue numbers with letters) were
renumbered. To avoid counting duplicate IFEs within the same PDB file that belong to the
same equivalence class, only the IFE with the highest number of residues were retained.

For the retained structure files, base pairs were identified using three different 2D struc-
ture annotation programs: RNAView [2], MC-Annotate [3], and DSSR [4]. Canonical base
pairs (AU WC Saenger class XX, GC WC Saenger class XIX, and GC wobble Saenger class
XXVIII, [5]) reported by at least two annotation programs were considered to create a con-
sensus RNA 2D structure. All pseudoknots were removed (as tree graphs cannot represent
pseudoknots), as well as structures with no or single/isolated base pairs or only one vertex
(as they won’t have any associated adjacency matrix or tree graph ID). The remaining 4,488
RNA structure files were used for further study.
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Table S1: Mean Squared Errors (MSE) using linear and quadratic polynomial regressions
for eigenvalue and squared eigenvalue points for tree graphs.

Number Mean Squared Error
of Eigenvalue points Squared eigenvalue points

Vertices Linear Quadratic Linear Quadratic

3 0.000 0.000 0.000 0.000
4 0.250 0.000 6.694 0.000
5 0.441 0.068 17.570 2.485
6 0.505 0.130 26.684 5.922
7 0.559 0.179 35.973 10.304
8 0.567 0.188 41.899 13.094
9 0.565 0.192 46.704 15.754
10 0.550 0.184 48.555 16.782
11 0.539 0.176 50.352 17.771
12 0.526 0.167 50.937 18.034
13 0.515 0.159 51.339 18.233

Table S2: Mean Squared Errors (MSE) using linear and quadratic polynomial regressions
for eigenvalue and squared eigenvalue points for dual graphs.

Number Mean Squared Error
of Eigenvalue points Squared eigenvalue points

Vertices Linear Quadratic Linear Quadratic
3 0.000 0.000 0.000 0.000
4 0.248 0.000 21.774 0.000
5 0.235 0.114 25.653 7.695
6 0.213 0.127 27.316 8.778
7 0.173 0.111 26.394 7.882
8 0.150 0.100 25.956 7.218
9 0.127 0.087 25.061 6.321
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Table S3: Eleven tree graph topologies that were removed from the list of existing tree graph
topologies.

Missing Associated Reason for
Topologies PDB IDs Removal

6 4 Several structures All superseded
9 4 3IZD A Assigned different topology
9 20 1L9A A, 1MFQ A, 2GO5 A, and 2J37 A Assigned different topology
11 56 1U9S A Assigned different topology
11 207 3DHS A Assigned different topology
11 216 2RKJ C Assigned different topology
12 286 3ZEX E 4V8M (supersedes 3ZEX)
12 392 3BO2 BCDE 3BO2 (only chain B)
13 181 3BO3 CDB 3BO3 (chains C,D removed)
13 1021 1GRZ B 1GRZ (chain A instead of B)
13 1047 1U6B CDB 1U6B (chains C,D removed)
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Table S4: PAM and K-means clustering accuracy. Shown for all tree and dual graph topolo-
gies with 3 or more vertices are the motifs classified as RNA-like and non RNA-like by
unsupervised clustering algorithms PAM and K-means using full linear and quadratic vari-
ables. Also shown are the number and percentage of existing tree and dual graph topologies
correctly classified as RNA-like.

(a) Tree Graphs

All Topologies (Total:2286) Existing Topologies (Total:79)
RNA–like non RNA–like RNA–like non RNA–like

Method Linear Variables

PAM
1645 641 61 18

(71.96%) (28.04%) (77.22%) (22.78%)

K-means
1645 641 61 18

(71.96%) (28.04%) (77.22%) (22.78%)

Method Quadratic Variables

PAM
1897 389 58 21

(82.98%) (17.02%) (73.42%) (26.58%)

K-means
1890 396 58 21

(82.68%) (17.32%) (73.42%) (26.58%)

(b) Dual Graphs

All Topologies (Total:110664) Existing Topologies (Total:118)
RNA–like non RNA–like RNA–like non RNA–like

Method Linear Variables

PAM
55250 55414 89 29

(49.93%) (50.07%) (75.42%) (24.58%)

K-means
55257 55407 89 29

(49.93%) (50.07%) (75.42%) (24.58%)

Method Quadratic Variables

PAM
58335 52329 86 32

(52.71%) (47.29%) (72.88%) (27.12%)

K-means
56994 53670 86 32

(51.50%) (48.50%) (72.88%) (27.12%)
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Table S5: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clustering
algorithm with full linear variables using leave-one-out cross validation for tree graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 60.82 67.09 56.96
3 62.66 68.35 59.49
5 58.73 67.09 51.90
7 59.94 69.62 55.06
9 58.73 63.29 53.16
11 58.86 63.29 54.43
13 58.23 63.92 50.00
15 59.68 66.46 50.00
17 60.51 65.82 51.27
19 60.70 65.19 55.70

Table S6: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clustering
algorithm with full quadratic variables using leave-one-out cross validation for tree graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 75.63 82.91 72.78
3 77.28 81.01 75.32
5 78.61 81.65 75.95
7 80.25 84.81 77.22
9 81.08 85.44 79.11
11 79.68 82.28 75.95
13 79.24 82.28 76.58
15 77.66 79.75 74.68
17 76.52 81.01 73.42
19 75.70 78.48 72.78
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Table S7: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clustering
algorithm with full linear variables using 10-fold cross validation for tree graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 60.51 66.46 56.33
3 62.78 68.99 58.86
5 59.43 67.09 54.43
7 60.32 67.72 53.16
9 59.43 65.19 51.90
11 58.73 64.56 54.43
13 59.62 65.83 53.80
15 59.62 67.09 53.80
17 60.95 65.19 55.70
19 59.56 63.92 53.80

Table S8: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clustering
algorithm with full quadratic variables using 10-fold cross validation for tree graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 76.08 81.65 72.15
3 76.71 81.01 72.78
5 78.61 84.18 75.32
7 80.32 83.54 76.58
9 80.70 82.91 77.85
11 80.32 82.28 78.48
13 78.23 80.38 76.58
15 77.47 81.01 74.05
17 76.39 81.01 70.25
19 76.27 79.11 74.05
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Table S9: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clustering
algorithm with full linear variables using leave-one-out cross validation for dual graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 64.24 66.95 61.02
3 65.55 68.64 60.17
5 66.74 70.34 64.83
7 67.84 72.03 64.41
9 68.64 71.61 66.53
11 68.86 70.76 66.53
13 68.35 71.19 65.25
15 68.60 70.34 66.53
17 68.52 71.61 65.25
19 68.69 72.46 63.98

Table S10: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN clus-
tering algorithm with full quadratic variables using leave-one-out cross validation for dual
graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 78.81 82.63 72.46
3 81.10 83.05 79.66
5 80.17 82.20 77.97
7 79.62 82.63 77.97
9 79.41 82.20 76.27
11 78.98 81.78 76.27
13 78.31 80.93 73.73
15 77.75 79.66 75.00
17 77.71 79.24 75.00
19 76.91 78.81 75.42
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Table S11: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN cluster-
ing algorithm with full linear variables using 10-fold cross validation for dual graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 63.86 65.25 61.86
3 65.59 69.49 61.02
5 66.53 69.49 63.98
7 67.67 71.61 64.41
9 68.01 71.19 65.68
11 68.35 71.19 65.68
13 68.35 72.46 66.10
15 69.19 72.46 66.95
17 68.31 72.03 65.25
19 68.39 71.61 65.68

Table S12: Average, maximum, and minimum accuracy (over 10 trial runs) of k-NN cluster-
ing algorithm with full quadratic variables using 10-fold cross validation for dual graphs.

Number of Average Maximum Minimum
Nearest Neighbors Accuracy Accuracy Accuracy

1 78.81 81.78 73.31
3 81.06 82.63 78.81
5 80.17 82.63 77.54
7 79.24 82.20 75.85
9 78.81 81.36 75.42
11 78.94 81.36 76.27
13 78.22 80.51 72.46
15 77.50 78.81 75.00
17 77.25 79.24 75.00
19 76.57 78.39 74.15
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Table S13: Average accuracy (over 10 trial runs) of k-NN clustering algorithm with reduced
linear and quadratic variables using leave-one-out (LOO) and 10-fold cross validation for
tree and dual graphs.

Average Accuracy (%)
Linear variables Quadratic variables
LOO 10-fold LOO 10-fold

Neighbors Tree Graphs
1 57.22 57.72 75.51 75.19
3 59.87 61.08 77.34 77.53
5 57.85 58.23 78.29 78.54
7 58.67 58.35 79.68 79.94
9 57.15 58.92 80.57 80.13
11 57.60 57.60 80.13 78.92
13 57.60 57.41 78.67 78.92
15 59.05 59.87 78.04 76.84
17 60.06 60.25 76.27 75.57
19 60.70 60.70 75.25 76.33

Neighbors Dual Graphs
1 61.23 60.68 67.88 68.31
3 62.71 64.28 72.16 71.44
5 65.09 66.36 71.57 71.02
7 66.53 66.95 71.91 72.20
9 67.54 68.18 72.88 73.48
11 67.80 67.63 73.05 73.09
13 68.26 68.35 72.67 72.43
15 68.31 67.84 73.26 73.56
17 68.56 68.77 73.26 73.01
19 69.03 68.56 73.94 73.14
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Table S14: Mean squared error for all existing tree graph topologies that were correctly
classified (61 of 79) and misclassified (18 of 79) by PAM and K-means clustering using
reduced linear variables.

Number of Eigenvalue points Squared eigenvalue points
Vertices Correctly Classified Misclassified Correctly Classified Misclassified

3 0 − 0 −
4 0.25 − 6.694 −
5 0.061 1.2 4.755 43.2
6 0.062 1.27 5.486 64.94
7 0.182 0.916 12.681 55.7
8 0.136 0.955 11.421 57.201
9 0.114 2.755 11.468 264.87
10 0.109 1.134 11.971 92.447
11 0.128 0.821 12.82 71.858
12 0.188 1.044 16.181 86.022
13 0.197 0.726 22.001 75.838

Average 0.138 1.096 12.366 82.601

Table S15: Mean squared error for all existing dual graph topologies that were correctly
classified (89 of 118) and misclassified (29 of 118) by PAM and K-means clustering using
reduced linear variables.

Number of Eigenvalue points Squared eigenvalue points
Vertices Correctly Classified Misclassified Correctly Classified Misclassified

3 0 0 0 0
4 0.203 0.151 21.482 13.997
5 0.141 0.248 25.06 21.253
6 0.2 0.35 30.048 29.451
7 0.216 0.128 41.366 19.894
8 0.141 0.006 30.219 11.164
9 0.142 0.336 31.356 36.116

Average 0.168 0.199 29.668 18.741
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(a) Comparison of linear and quadratic fit for eigenvalue and squared eigenvalue points
for tree graph with RAG ID: 13 1.

(b) Comparison of linear and quadratic fit for eigenvalue and squared eigenvalue points
for tree graph with RAG ID: 13 1301.

Figure S1
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(a) Comparison of linear and quadratic fit for eigenvalue and squared eigenvalue points
for dual graph with RAG ID: 9 1.

(b) Comparison of linear and quadratic fit for eigenvalue and squared eigenvalue points
for dual graph with RAG ID: 9 92788.

Figure S2
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(a) (b)

Figure S3: MSEs using linear and quadratic regressions for (a)tree graph squared eigenvalues
(b)dual graph squared eigenvalues

Figure S4: Full linear variables, x1, x2, x3, x4, plotted against each other for tree graphs.
Refer to the text in Section S2 and Materials and Methods in the main paper for definitions
of the variables.
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Figure S5: Full quadratic variables, x1, x2, x3, x4, x5, plotted against each other for tree
graphs. Refer to the text in Section S2 and Materials and Methods in the main paper for
definitions of the variables.
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Figure S6: Full linear variables, x1, x2, x3, x4, plotted against each other for dual graphs.
Refer to the text in Section S2 and Materials and Methods in the main paper for definitions
of the variables.
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Figure S7: Full quadratic variables, x1, x2, x3, x4, x5, plotted against each other for dual
graphs. Refer to the text in Section S2 and Materials and Methods in the main paper for
definitions of the variables.
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