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ABSTRACT: Novel RNA motif design is of great practical
importance for technology and medicine. Increasingly, computational
design plays an important role in such efforts. Our coarse-grained
RAG (RNA-As-Graphs) framework offers strategies for enumerating
the universe of RNA 2D folds, selecting “RNA-like” candidates for
design, and determining sequences that fold onto these candidates. In
RAG, RNA secondary structures are represented as tree or dual
graphs. Graphs with known RNA structures are called “existing”, and
the others are labeled “hypothetical”. By using simplified features for
RNA graphs, we have clustered the hypothetical graphs into “RNA-
like” and “non-RNA-like” groups and proposed RNA-like graphs as
candidates for design. Here, we propose a new way of designing graph
features by using Fiedler vectors. The new features reflect graph
shapes better, and they lead to a more clustered organization of existing graphs. We show significant increases in K-means clustering
accuracy by using the new features (e.g., up to 95% and 98% accuracy for tree and dual graphs, respectively). In addition, we propose
a scoring model for top graph candidate selection. This scoring model allows users to set a threshold for candidates, and it
incorporates weighing of existing graphs based on their corresponding number of known RNAs. We include a list of top scored
RNA-like candidates, which we hope will stimulate future novel RNA design.

■ INTRODUCTION

Aside from RNAs that act as templates for translation into
proteins, microRNAs, silencing RNAs, ribozymes, and
riboswitches have central roles in catalysis, gene regulation,
and gene editing activities.1,2 The 3D structures of these
noncoding RNAs are essential for completing their tasks. Since
the first RNA structure published in 1965,3 thousands of RNA
structures have been determined by X-ray crystallography,
NMR spectroscopy, cryo-EM, and other experimental
techniques. Figure 1 displays the number of RNA structures
available in Protein Data Bank (PDB) from 1978 to 2019
(https://www.rcsb.org/stats/growth/growth-rna).
The fast growing RNA databases suggest that our known

structural repertoire is just the tip of the iceberg of the RNA
universe. Discovering and designing new RNA folds have
important implications to technology and medicine. Indeed,
RNA nanotechnology is an emerging field for RNA-targeting
therapeutics. RNAs like aptamers, silencing RNAs, ribozymes,
and riboswitches can be applied for medical diagnosis, targeted
drug delivery, and gene silencing and regulation, with possibly
reduced side effects and immune responses compared with
antibody- and small-molecule-based therapeutics.4,5 RNA-
based vaccines have now become a reality to fight the
COVID-19 pandemic, with two mRNA-based vaccines by
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Figure 1. Number of RNA structures available in PDB.
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Pfizer/BioNTech and Moderna with >90% efficacy entering
the clinic at warp speed.
The building blocks of these RNA therapeutics often require

prediction and design of RNA secondary and tertiary
structures.4 Secondary structures of RNAs refer to the
hydrogen bonding networks that form as the single-stranded
RNA molecule folds upon itself to form double-stranded
regions (stems), imperfect with loops. Tertiary structures
involve the folding in space of these networks. While many
programs like ViennaRNA,6 MFOLD,7 PKNOTS,8 NU-
PACK,9 and INFO-RNA10 can effectively predict and design
RNA secondary structures with or without pseudoknots (or
intertwined hydrogen-bonded segments), accurate and con-
sistent RNA tertiary structure prediction remains a chal-
lenge.11−15 The large number of degrees of freedom in building
RNA 3D atomic models is a key difficulty, and thus coarse-
grained approaches like our RNA-As-Graphs (RAG) frame-
work developed since 200316 provide viable alternatives. (See
refs 17 and 18 for recent reviews of simplified approaches to
RNA modeling.)
Graphs have been used to describe RNA secondary

structures since the 1980s.19−22 Ruth Nussinov, to whom
this article is dedicated, made many pioneering contributions
to RNA representations and structure analysis, including
proposing the usage of circular plots to represent RNA
pseudoknots (see Figure 2b).23

In our RAG approach, we represent RNA 2D structures as
tree or dual graphs: for tree graphs, loops (hairpins, bulges,
internal loops, junctions, dangling ends) are represented as
vertices, and stems are edges. For dual graphs, we reverse this
definition so that vertices represent stems, and edges denote
loops.24 Dual graphs represent pseudoknots explicitly, while
tree graphs are more intuitive.
Figure 2a illustrates the tree and dual graphs of an IRES

RNA (PDB code 2NC1). This coarse-grained representation
of a 2D strcture significantly reduces the dimension of the
conformational space compared to the sequence space and
allows us to enumerate all possible nonisomorphic graph
topologies for a given number of vertices using graph theory
enumeration.25,26 Another advantage of graph representation is
its insensitivity to small variations in base pairing. Figure 2b
shows two possible 2D structures of the 3_6 pseudoknot of the
SARS-CoV-2 frameshifting element (FSE).27−29 Although the
two structures have different stem and loop sizes (see
associated circular diagrams), their overall topologies are the
same: both have the dual graph 3_6 representation. When
studying RNAs whose functions rely on their 2D structures,
such as this FSE pseudoknot, focusing on the overall topology
helps us better distinguish among and classify RNA
conformations. See our work on this RNA using graph theory
to define drug−target residues, interpret COVID-19 related
frameshifting mechanisms, and the relevance of several graphs
to the conformational space.29,30

We label those graphs that have corresponding known RNA
structures as “existing” and the others as “hypothetical”. Each
graph has a unique identification number. Using solved RNA
structures in PDB, we have found 80 existing tree graphs out of
the total 2287 tree graphs that have 2−13 vertices, and 121
existing dual graphs out of the total 110 667 dual graphs that
have 2−9 vertices.31

We have further applied graph theory to select features for
the graph topologies to classify hypothetical graphs into “RNA-
like” and “non-RNA-like” motifs.31 Thus, an RNA-like motif
resembles existing topologies, so it would be more likely to
exist in nature. Such candidates can then be designed by
“inverse folding” (produce sequences that fold onto the target
motif) by our computational pipeline.32 In our pipeline, we
first partition the target tree graph into subgraphs using our
partitioning algorithm33 and extract corresponding atomic
fragments from our RAG-3D database.34 Second, we assemble
these atomic fragments using our F-RAG tool.35 Third, the
assembled sequences are screened in silico by 2D structure
prediction programs like RNAfold and NUPACK to determine
whether this inverse folding (IF) is successful. Fourth, we
mutate sequences that do not fold onto the target tree graph by
our genetic algorithm RAG-IF36 until we obtain successful
designs. Experimental testing of two designed sequences using
SHAPE-MaP has shown promise.30,32,37

In this paper, we improve our graph clustering approach for
identifying novel design candidates by using Fiedler vectors,
along with a new scoring model. Prior features were derived
from the Laplacian spectra of the graphs using linear or
quadratic variables, and both unsupervised clustering algorithm
K-means and supervised classification k-nearest-neighbors (k-
NN) were used to classify the graph topologies.31 By use of our
new features, the accuracy of K-means clustering significantly
increases from 77.22% to 95% for tree graphs (linear variables)
and from 75.42% to 98% for dual graphs; for quadratic
variables, notable improvements also result.31 The 10-fold

Figure 2. (a) Tree and dual graph representation of the 2D structure
of an IRES RNA (PDB code 2NC1). In its 3D structure, stems are
colored red and loops are gray. With loops (gray) labeled as vertices
and with stems (red) labeled as edges, its 2D structure can be
represented as RAG tree graph 5_2. With stems labeled as vertices
and loops as edges, the 2D structure can be represented as RAG dual
graph 4_16. (b) Two possible 2D structures of a pseudoknot of the
SARS-CoV-2 frameshifting element, with associated circular diagrams,
and their common dual graph representation 3_6.
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cross validation accuracy of k-NN classification using the new
features increases to 66−73% for tree graphs (from 58−63%
using full linear variables) but decreases slightly from 76−81%
using full quadratic variables; for dual graphs, we improve the
accuracy to 73−78% compared to full linear variables (63−
69%) and it decreased slightly from 76−81% for full quadratic
variables.31 In addition to notable increased classification
accuracy compared to linear variables, the new features allow
us to incorporate graphs with two vertices and their large
associated pool of known RNA structures as fragments in our
clustering work.
An added advantage of the Fiedler vector scoring model is

the introduction of a threshold value for novel motif
candidates. In contrast, K-means clustering often classifies
more than 50% of the total graphs as RNA-like, and thus it is
difficult to identify top candidates for novel RNA design. Our
scoring model also incorporates weighing of existing graph
topologies based on their corresponding number of known
RNAs, so it effectively uses existing RNA data. With these new
features and scoring model, we can thus propose stronger and
more targeted candidates for design of novel RNA motifs.
Another interesting application of the Fiedler vector scoring

model is to find motifs similar to a given graph. This can be
useful for discovering or creating an alternative fold of an RNA.
In our recent paper, we applied RAG-IF to define minimal
mutations that transform the SARS-CoV-2 FSE pseudoknot
into other graph motifs to identify target residues for antiviral
drug and gene editing strategies.29 In this process, determining
related graph motifs can be challenging, especially when facing
a large pool of candidates. However, our scoring model can
analyze the graph motifs to define a ranked list of candidates.
Our mutation results29 align well with our scoring model
ranking: highly ranked candidates require fewer mutations.
In the next section (Methods), we present the new Fiedler

vector scoring model followed by its motivation and a simple
illustration. The Results section compares the clustering for
new versus prior features, assesses the scoring model
performance, and tests the predictive power of the Fiedler
vector scoring model. In the last section, we summarize our
findings, discuss applications of our model, and suggest future
improvement areas.

■ METHODS
Basic Definitions. Both tree and dual graphs can be

described by their adjacency matrices (see Figure 3 and Figure
4 for examples). A tree graph with n vertices has an n × n
adjacency matrix A, with entries aij = 1 if there is an edge
between vertex i and j and aij = 0 otherwise. For dual graphs,
self-loops are allowed, and there can be multiple edges
connecting two vertices. Hence, the adjacency matrix A for a
dual graph has entries aij equal to the number of edges between
vertex i and j, and aii = 2 if there is a self-loop on vertex i. The
degree matrix D of a graph is an n × n diagonal matrix, with
diagonal entries dii equal to the number of edges incident on
vertex i. The Laplacian matrix is L = D − A. By construction,
the Laplacian matrix is positive semidefinite, with λ1 = 0 as its
smallest eigenvalue and associated eigenvector μ1 = (1,1, ...,
1)T. Because our graphs are connected, the second smallest
eigenvalue of L, the Fiedler value λ2, is positive.
The Fiedler value describes the algebraic connectivity of a

graph, and its corresponding eigenvector is called the Fiedler
vector. When two simple graphs (no self-loops or multiple
edges between two vertices) are compared, the more compact

graph has a larger Fiedler value (a simple explanation is
provided in Appendix C in Supporting Information). Tree
graphs are simple graphs, and more compact tree graphs
correspond to more branched RNAs or RNAs with more
junctions. Figure 3 illustrates three tree graphs with increasing
compactness.

Figure 3. Analysis of three tree graphs 7_1, 7_2, and 7_4. For each
tree graph, the vertices are numbered from 1 to 7, and the
corresponding Fiedler value λ2 is shown. The corresponding Laplacian
matrix L and the Fiedler vector μ2 are shown at center. At right, the
Fiedler vector components are mapped onto their corresponding
vertices, i.e., μ2,i for vertex i, and the different modules that make up
the graph are colored.

Figure 4. Analysis of three dual graphs 3_6, 4_14, and 4_10. For each
dual graph, the vertices are numbered, and the corresponding Fiedler
value λ2 is shown. The corresponding Laplacian matrix L and the
Fiedler vector μ2 are shown at center. At right, the Fiedler vector
components are mapped onto their corresponding vertices, i.e., μ2,i for
vertex i.
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Because the Laplacian L is symmetric, its eigenvectors are
orthogonal. Hence, the Fiedler vector μ2 is orthogonal to μ1 =
(1,1, ..., 1)T; i.e., its components sum up to 0. In spectral
partitioning, Fiedler vectors are utilized to identify graph cuts
that optimize different conditions.38 For tree graphs, we have
used Fiedler vectors to partition RNAs.33

Fiedler Vector Scoring Model. Though the Fiedler value
λ2 measures a graph’s compactness, using it alone is insufficient
to distinguish among graphs. Our previous approach derived
features from the Laplacian spectra 0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn
for all graphs with n ≥ 3 vertices, as follows (implementation
details in Appendix A).31

Prior Features
(1) Perform linear regression for eigenvalue points (1, λ2),

(2, λ3), ..., (n − 1, λn) to obtain slope α1 and y-intercept
β1. Scale α1 as nα1 to be independent of n.

(2) Perform linear OR quadratic regression for squared
eigenvalue points (1, λ2

2), (2, λ3
2), ..., (n − 1, λn

2) to
obtain scaled slope nα2 and y-intercept β2. Alternatively,
we derive coefficients a, b, c for the polynomial ax2 + bx
+ c by quadratic regression.

(3) Together, we call [nα1, β1, nα2, β2] full linear variables
and we call [nα1, β1, a, b, c] full quadratic variables. To
ensure the variables contribute equally, we normalize
them to obtain same mean values as nα1.

(4) Use principal component analysis (PCA) to select two
features from the full linear/quadratic variables, and call
the features reduced linear/quadratic variables

This feature selection is heuristic. To develop features that
better reflect the graph topologies, we are motivated by the
observation of correspondence between Fiedler vector
components and graph structure (see next section). This
leads us to the following definition of features s and e.

New Features s and e
(1) Calculate the normalized Fiedler vector μ2 = (μ2,1, μ2,2,

..., μ2,n)
T of the Laplacian matrix L.

(2) Sort the Fiedler vector components {μ2,i}i=1
n in ascending

order and denote the ordered components {vi}i=1
n .

(3) Scale each vi to be

̃ =
−

−
v

v n
v v
( 1)

i
i

n 1

(4) Perform linear regression on the points (1, ṽ1), (2, ṽ2),
..., (n, ṽn) to obtain slope s and mean squared error e.

Using new features {s, e}, we score tree and dual graphs
separately with additional weighing information for existing
graphs. For M existing graphs and N total graphs, we order
existing graphs as 1 ≤ i ≤ M and all graphs as 1 ≤ j ≤ N. Each
existing graph i has a weight wi, which is the number of known
RNAs corresponding to this graph topology. Then we score
the graphs as follows; see below for motivation.

Scoring Model
(1) For existing graph i with weight wi, its initial score is

σ ε= +ES wlog( )i i (1)

where σ and ε are adjustable parameters.

(2) Suppose existing graph i has features (si, ei) and graph j
has (sj, ej), then the score that graph j receives from
existing graph i is

= [− ]S ES rd xexp ( / )j i i ij i, (2)

where r is a parameter, xi = +s e( )i i
2 2 , and dij =

− + −s s e e( ) ( )i j i j
2 2 .

(3) Sum up the scores that graph j receives from all the
existing graphs, i.e.,

∑=
=

S Sj
i

M

j i
1

,
(3)

(4) Normalize the scores to be in the range from 0 to 100 by
S

S

100

max
j

j j
.

Note that the scoring model works for any pair of features
{f1, f 2}. Here this pair is {s, e}.

Feature Selection Motivation. If we examine the Fiedler
vectors for different tree graphs, we observe a one-to-one
correspondence between the Fiedler vector components and
the tree graph vertices. For a tree graph with n vertices, each
eigenvector has n components. If we assume the Fiedler value
λ2 is simple, then the normalized Fiedler vector μ2 is unique up
to a sign change. Once the vertices of the graph are numbered,
μ2 is fixed so that we can associate each vector component μ2,i
with vertex i.
To describe the correspondence between Fiedler vector

components and graph vertices, we first define two basic
modules that make up tree graphs (see Figure 3). A linear
module is composed of m vertices that are connected in a line
by m − 1 edges (m ≥ 3). In this line, the two end vertices have
degree 1 and the others have degree 2. A k-way branched
module is a k-way junction represented by RAG tree graph. Its
k branch vertices are adjacent to the center vertex, making its
degree k. Any two modules can be combined by overlapping a
common edge. Because we seek to divide a tree graph into
distinct topologies, there is no combination of a linear module
with another linear one.
In the last column of Figure 3, we label the component

modules of sample tree graphs and indicate corresponding
Fielder vector components. We see that within linear modules,
the Fiedler vector components increase in value. Within 3-way
branched modules, the two free end branch vertices have same
Fielder vector component values. Moreover, if the free end
branch vertices precede the center vertex, their Fiedler vector
components are smaller than that of the center vertex;
otherwise, they are larger. In this way, the Fiedler vector
components increase monotonically from one end of the tree
graph to the other. Mathematical explanations for these
observations are in Appendices B and C.
Although dual graphs may contain pseudoknots that

complicate the topology, similar observations apply. Figure 4
shows three dual graphs with their Fiedler vectors. Dual graph
4_14 is an analogue of a linear module, and again its Fiedler
vector components monotonically increase. Dual 4_10
contains a 3-way junction, with vertices 1 and 2 representing
the two free end helical arms. These two vertices are analogous
to the free end branches in tree graph 3-way branched module,
so again, they have the same Fiedler vector component value,
and it is smaller than that of the following center vertex 3. Dual
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graph 3_6 (associated with the SARS-CoV-2 frameshifting
element29,30) is a 3-stem pseudoknot, where stems 1 and 2 are
intertwined and stem 3 is a hairpin. Vertices 1 and 2 are
connected to other vertices in the same way, just like the free
end branch vertices. As expected, they have the same Fiedler
vector component values.
Thus, the way vertices are arranged in graphs is reflected in

the Fiedler vector components μ2,i. Because adjacent vertices
have similar μ2,i values and the values increase monotonically
from one end of the graph to the other, the distribution of the
ordered components vi may capture graph topology. To make
the distribution independent of n, we scale vn − v1 to be n − 1,
i.e.,

̃ =
−

−
v

v n
v v
( 1)

i
i

n 1

Figure 5 plots points {(i, ṽi)}i=1
n for four sample tree graphs. For

simple linear-moduled tree graphs like 7_1, the points (i, ṽi)

increase in a straight line. For k-way branched modules, the
free end branch vertices give repeated ṽi values, and the
distributions reflect this. For example, the 4-way branched
module of 7_5 has three repeated values for i = 5, 6, 7, so
branching is at the end. For graph 7_7, the three repeated
values for i = 3, 4, 5 indicate branching in the middle.
We use linear least-squares regression to describe the point

distributions and look at slopes s and mean squared errors e.
For linear modules like graph 7_1, the points fit the linear
regression well, so slopes s are close to 1 and errors e are very
small. For k-way branched modules, repeated ṽi values make
the points deviate from the linear fit, and errors e are larger.
The locations of these repeated values also influence s and e.
Having the values in the middle like graph 7_7 decreases s and
e, compared to branching at the end like graph 7_5. The
situation is similar for dual graphs. Thus, we let the slope s and
the mean squared error e be features for our graphs, and this
feature selection works for all graphs with n ≥ 2.
The slope s can be calculated explicitly (derivation provided

in Appendix D):

∑ ∑=
− +

̃ =
+ −= =

s
n n n

iv
n n

iv
v v

12
( 1) ( 1)

12
( 1)i

n

i
i

n
i

n1 1 1

Because ∑ivi = 0 and

−
−

−
=

v
v v

v
v v

1n

n n1

1

1

the
−
v

v v
i

n 1
terms are of scale ∼1 and the summation is

∑
−

∼ +
=

iv
v v

n n( 1)
i

n
i

n1 1

Hence, our scaling makes the slope s independent of the vertex
number n.

Scoring Model Motivation. With any defined pair of
features {f1, f 2}, we can represent a graph as a point ( f1, f 2) in
the plane. Good features should capture key information about
the graph’s arrangement, so we expect RNA-like topologies to
be clustered together, and the closer a graph is to an existing
one, the more likely it is to find corresponding RNA structures.
We incorporate existing graphs and their weights (number of

known RNAs) to build the scoring model, where the score
assigned to a graph represents the likelihood of finding RNAs
of this topology. The basic idea of our scoring model is to treat
every existing graph like a hotspot radiating heat. The radiation
decreases exponentially with distance. An existing graph with
larger weight exhibits more radiation. To model more distant
graphs with respect to an origin with larger radiation ranges
and to reflect absorption of energy from more neighbors, we
score graphs by the total amount of heat they receive.
This visual helps explain the first two steps of our scoring

model:

(1) The initial score assigned to existing graph i is

σ ε= +ES wlog( )i i

where the weight wi is the number of known RNAs
corresponding to this graph topology. This is an increasing
function of weight. Using a large σ considers graphs with
higher weights to be more important, while a small σ treats all
existing graphs equally. Note that ε is added to have nonzero
scores to graphs of weight 1. Using a large ε diminishes the
impact of weights on initial scores.

(2) Each existing graph contributes scores to the graphs
nearby, and the score that graph j receives from existing
graph i is

= [− ]S ES rd xexp ( / )j i i ij i,

The dij value is the distance between the two graphs, so this
score exponentially decays as distance increases. The
parameter r controls the score’s decay rate, with larger r
meaning more rapid decay. The xi term is the distance of
existing graph i from the origin (0,0); including this term
allows us to use existing graphs to influence a range of graphs.

Simple Illustration. To illustrate, we show how two
existing tree graphs 2_1 and 7_2 contribute scores to points in
the plane in Figure 6. We use our newly derived features s and
e. Since we have many existing graphs with weights 1, we set σ
= 1 not large. We choose ε = 5 to let the weights have a
moderate impact on the initial scores. On the basis of trials, we
set r = 1.5. For points in the plane, we sum the scores they
receive from 2_1 and 7_2 using eqs 1 and 2. Then we draw a
filled contour plot using the scores, i.e., yellow to white for

Figure 5. Plots of scaled ordered Fiedler vector points (i, ṽi) of four
tree graphs 7_1, 7_5, 7_7, and 7_10. Linear least-squares regressions
are drawn as red lines, and the slopes s and mean suqared errors e are
calculated.
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scores high to low, with 20 contour lines at evenly spaced score
levels. As expected, the plot looks like a heat map, with two
graphs 2_1 and 7_2 at centers of two “hotspots” that “radiate
heat” outward.
There are M = 80 existing tree graphs with 2−13 vertices,

and 2_1 is enumerated as the first one with weight w1 = 826,
and 7_2 is enumerated as the 14th with weight w14 = 8. By eq
1, the initial score of 2_1 is ES1 = 11.72, and that of 7_2 is ES14
= 7.08. As a result, the neighborhood around 2_1 looks slightly
hotter than that of 7_2. Graph 2_1 has s = 1 and e = 0, so its

distance from the origin is x1 = 1; graph 7_2 has s = 1.13 and e
= 1.85, so x14 = 2.17. Because 7_2 is further away from the
origin, it has a larger “radiation range”, which can be seen from
the contour lines being further apart from each other there.
We can also calculate scores for some graphs. For 7_2, its

distance from 2_1 is d = 1.86, so the score 7_2 receives from
2_1 (eq 2) is

= [− × ] =S 11.72 exp (1.5 1.86)/1 0.72j ,1

The summed score for 7_2 (eq 3) is Sj = 205.97. The
maximum score is 206.71, so following normalization, the
score for 7_2 is 99.65. For tree graph 7_1, we obtain score
89.00, and for tree graph 7_4, the score is 86.00. The scores of
these three tree graphs should reflect their likelihood to exist in
nature.

■ RESULTS

Clustering Comparisons with Prior Features. K-Means
Comparison. To see how well our new features s and e work,
we compare the clustering results using these new features with
those of prior features. We first apply K-means clustering (see
details in Appendix A.1), with reduced linear or quadratic
variables for comparison. By mapping feature 1/feature 2 (x-
axis/y-axis) into the plane, we represent graphs as points in the
plane. K-means is then applied to cluster the points into two
groups. We label the group with more existing graphs as
“RNA-like”, and the other as “non-RNA-like”. Note that using
s and e allows us to add tree graph 2_1 and three dual graphs
2_1, 2_2, 2_3 as existing graphs. They were not considered
before because previous feature derivation required graphs to
have at least 3 vertices.

Figure 6. Illustration of how tree graphs 2_1 and 7_2 contribute
scores to points in the plane. The new feature s is used for x-axis, and
e is used for y-axis.

Figure 7. K-means clustering results for the three different feature selections. For s and e features, x-axis is for s and y-axis is for e. For linear/
quadratic variables, x-axis is for feature 1 obtained using PCA and y-axis is for feature 2. Distributions for existing graphs are enlarged, with graph
weights (number of known RNA structures) shown to the right of the overall distributions.
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Figure 7 shows the K-means plots with a zoom into existing
graphs (red). The RNA-like hypothetical points are colored
blue, and the non-RNA-like points are black. Compared to
prior features, our new s and e approach spreads out the graphs
while still clustering existing motifs. Those existing motifs tend
to have low e values with s values around 1 (bottom center of
plots). On the basis of our observations in Figure 5, graphs
with higher-order junctions with branching at the end tend to
have larger e values. In our database, there are indeed only a
few graphs with five or more-way junctions.39

For the existing graphs, weights (from number of known
RNA structures) are listed. With the proposed features s and e,
existing graphs with heavy weights are highly concentrated at
the bottom center, and the graphs far from this center mostly
have weights 1. With our prior reduced linear variables, existing
tree graphs concentrate at the right end of the plot, but some
graphs with heavy weights are far from the center, even the
graph with the heaviest weight 580. The observation for dual
graphs is similar: existing dual graphs concentrate at the center,
with some heavy-weighted graphs further away. Using reduced
quadratic variables, some heavy-weighted graphs are positioned
away from the centroid of existing graphs.
We can evaluate the clustering performance by calculating

the accuracy, which is defined as the percentage of existing
graphs correctly classified as RNA-like. The more clustered
existing graphs using s and e allow K-means to achieve a higher
accuracy. In Figure 7, graphs at the bottom half plane are
classified as RNA-like using our new features s and e, and
almost all existing graphs fall in this cluster. The accuracies
using new and prior features are listed in Table 1. By use of s

and e, the accuracy is as high as 95% for tree graphs and
98.35% for dual graphs, compared to 77.22% (linear) and
73.42% (quadratic) for tree graphs and 75.42% (linear) and
72.88% (quadratic) for dual graphs. In Table 1, we also show
the percentages of graphs classified as RNA-like and non-RNA-
like. By use of s and e, the RNA-like percentage increases from
∼50% to 71.15% for dual graphs due to the high densities of
graphs with low e values.
k-NN Comparison. We also perform comparative (un-

trained) k-NN classification (see Appendix A.2 for details) to
see how cross validation accuracy changes. The hyper-
parameter k, number of neighbors, is set to be the odd
numbers between 1 and 19. Because we only have M existing
graphs as positive data, we synthesize negative data sets by

randomly selecting M graphs among the hypothetical and
create 10 such negative data sets. Using s and e, we now have
M = 80 for tree graphs and M = 121 for dual graphs, while
using prior features results in M = 79 for tree graphs and M =
118 for dual graphs. To avoid bias from negative data set
selection, the same negative data sets used before31 are taken
for the prior features, and we add additional random
hypothetical graphs for the new features. The average
accuracies of 10-fold cross validations over the 10 negative
data sets are calculated for new features.
In previous work,31 we found that using full linear/quadratic

variables yields higher average accuracies than the reduced
ones, so we use those accuracies to compare with
corresponding new values using s and e in Table 2. For tree

graphs, our new features increase the average accuracy by
about 10%, from ∼60% to ∼70% for full linear variables, but
decrease by about 8% from ∼78% for full quadratic variables.
For dual graphs, we observe a similar increase of around 10%
(from ∼67% to ∼77%) for full linear variables, but there is no
significant decrease with full quadratic variables.

Scoring Model Performance. By use of our (untrained)
previous clustering methods, many graphs were classified as
RNA-like, and it is difficult to select candidates for RNA
design. Our current scoring model solves this problem by
incorporating the weight information of existing graphs, thus
producing far less “false positives”.25 Setting the parameters σ =
1, ε = 5, r = 1.5 (see Methods for how these parameter values
are chosen) and using our new features s and e, we show the
scores for all tree and dual graphs in Figure 8, where a color
bar displays how different colors represent different scores. As
expected, high scores are assigned to graphs at the bottom.
Moreover, we separate the score histograms for existing and
hypothetical graphs. The majority of existing graphs have
scores higher than 70 (65% for tree and 73.6% for dual), while
only 15.7% of hypothetical tree graphs and 12.4% of
hypothetical dual graphs have scores higher than 70.
As our scoring model works for all feature selections, we also

calculate the scores for reduced linear/quadratic variables. We
list the average scores for all existing and hypothetical graphs
for both tree and dual graphs in Table 3. Although using
different parameter values, especially different r values,
influences the average scores, the overall average score pattern

Table 1. K-Means Accuracy and Predictionsa

tree K-means

s and e linear quad

accuracy (%) 95.00 77.22 73.42
RNA-like (%) 78.62 71.87 82.68
non-RNA-like (%) 21.38 28.13 17.32

dual K-means

s and e linear quad

accuracy (%) 98.35 75.42 72.88
RNA-like (%) 71.15 49.93 51.50
non-RNA-like (%) 28.85 50.07 48.50

aFor both tree and dual graphs, the K-means clustering accuracy and
the percentages of graphs classified as RNA-like and non-RNA-like are
calculated, using new s and e features and prior reduced linear/
quadratic variables.

Table 2. k-NN Cross Validation Accuracya

average accuracy (%)

tree graphs dual graphs

k s and e linear quad s and e linear quad

1 67.19 60.51 76.08 72.93 63.86 78.81
3 66.38 62.78 76.71 74.09 65.59 81.06
5 71.56 59.43 78.61 77.81 66.53 80.17
7 69.38 60.32 80.32 77.40 67.67 79.24
9 71.56 59.43 80.70 77.40 68.01 78.81
11 72.00 58.73 80.32 77.07 68.35 78.94
13 71.88 59.62 78.23 78.18 68.35 78.22
15 72.31 59.62 77.47 78.02 69.19 77.50
17 72.56 60.95 76.39 77.89 68.31 77.25
19 72.75 59.56 76.27 77.69 68.39 76.57

aThe average 10-fold cross validation accuracy of k-NN classification
is taken over 10 negative datasets, using new s and e features and prior
full linear/quadratic variables. The average accuracy is shown for k =
1, 3, ..., 19.
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for existing and hypothetical graphs depends on the graph
distributions. Compared with prior features, our new s and e
approach spreads out the graphs while clustering the existing
graphs. Hence, s and e lead to a much larger average score for
existing graphs compared to hypothetical graphs. The prior
features yielded more similar values for all graphs; for quadratic
variables, scores for the hypothetical graphs were even higher
than those of existing graphs.
Predictions Using 2015 and 2018 Known RNA

Databases. To analyze the predictive power of our model,
we perform prediction tests on newly identified existing tree
and dual graphs since 2015 and 2018, respectively. The 2015
tree graph database25 contains 46 of the 80 existing tree
graphs, and the 2018 dual graph database40 contains 87 of the
121 existing dual graphs. We take these older existing graphs as
our training set T, and we include the newly added existing
graphs and all hypothetical graphs as our test set P. We train

our scoring model using existing graphs in set T, and we
calculate scores for all graphs. We set a threshold t = γ ×
average score of set T, where 0 < γ ≤ 1. The graphs in P that
have scores of ≥t will be considered RNA-like, and the others
will be considered as non-RNA-like. Again, we define the
accuracy to be the percentage of existing graphs in P that are
correctly classifed as RNA-like. We also calculate the
percentage of graphs in P that are considered RNA-like. We
perform such predictions using new and reduced linear/
quadratic variables.
The prediction accuracy and percentage of RNA-like graphs

depend on the threshold we set. Since we are clustering graphs,
not selecting top candidates, we seek high RNA-like
percentages. On the basis of our observations of average
scores in Table 3 and some trial and error, we find that for tree
graphs, setting γ = 0.5, 1, and 1, respectively for new features,
reduced linear and quadratic variables yields 49−63% RNA-
like percentage and 76−82% prediction accuracy; for dual
graphs, setting γ = 0.4, 1, and 1 yields 33−65% RNA-like
percentage and 73−88% prediction accuracy. The correspond-
ing accuracies and RNA-like percentages are recorded in Table
4. We plot the prediction results in Figure 9, where correctly
classified and misclassifed newly added existing graphs are
represented by different symbols.

We can also compare our scoring model with K-means and
k-NN by conducting similar prediction tests. For k-NN, we use
T as positive data set, and we randomly generate 10 equal sized
negative data sets from P, and we perform predictions for the
test set P. The prediction accuracy is defined as above, and we
take the average accuracy and RNA-like percentage over 10
trials with the 10 negative data sets. The prediction results are
recorded in Table 4, and we plot the results of trial 1 in Figure
9 for comparison. The K-means clustering is not affected by
our specification of existing graphs because this unsupervised
approach does not rely on our labeling of graphs, but the
relevant accuracy changes. These accuracy results are recorded
in Table 4 for comparison.

Figure 8. Scoring results for new features s and e. Top two plots show
scores of tree and dual graphs, with a color bar indicating how
different colors represent different scores. The two middle plots are
histograms of existing graph scores on a probability scale. The two
bottom plots are histograms of hypothetical graph scores on a
probability scale.

Table 3. Average Score Comparisonsa

tree graph average scores

s and e linear quad

all graphs 46.87 88.60 78.12
existing 73.84 90.45 74.51
hypothetical 45.89 88.54 78.25

dual graph average scores

s and e linear quad

all graphs 31.11 78.32 71.26
existing 76.94 78.82 67.66
hypothetical 31.06 78.32 71.27

aTree and dual graph average scores using new s and e features or
prior reduced linear/quadratic variables. For each feature selection,
the average scores of all graphs, of existing graphs, and of hypothetical
graphs are listed.

Table 4. Prediction Test Resultsa

tree predictions

s and e linear quad

scoring accuracy (%) 82.35 76.47 76.47
RNA-like (%) 49.49 62.03 63.41

k-NN accuracy (%) 43.82 35.00 41.76
RNA-like (%) 11.95 25.69 9.46

K-means accuracy (%) 97.06 79.41 82.35
RNA-like (%) 78.62 71.96 82.68

dual predictions

s and e linear quad

scoring accuracy (%) 88.24 73.53 85.29
RNA-like (%) 33.31 62.34 65.89

k-NN accuracy (%) 59.12 57.65 62.94
RNA-like (%) 16.30 23.60 15.22

K-means accuracy (%) 97.06 85.29 79.41
RNA-like (%) 71.15 49.93 51.50

aBy use of new s and e features or prior reduced linear/quadratic
variables, the classification accuracy of newly added existing graphs
and the percentage of RNA-like graphs are calculated for scoring
model, k-NN, and K-means.
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The comparisons in Table 4 show that using new s and e
features achieves highest accuracy except for dual graph
predictions using k-NN. Among the three prediction methods,
K-means often obtains the highest accuracy of 79−97%, and
this is followed by our scoring model with accuracy of 73−
88%. The k-NN approach comes last, with accuracy of 35−
62%. We observe the same pattern for the RNA-like
percentage: K-means obtains 50−82%, scoring model has
33−65%, and k-NN finds 9−25%. Moreover, if we compare
the clustering plots of K-means in Figure 7 to the plots of
scoring model and k-NN in Figure 9, we see that K-means and
our scoring model have similar clustering patterns. These two
methods cluster RNA-like graphs together in one region, and
the region is similar but smaller for our scoring model, which is
consistent with its lower RNA-like percentage. However,
except for the s and e features, k-NN identifies two separate
clusters of RNA-like graphs. This may be because using prior
features, the existing graphs are more spread out, so the
algorithm identifies two RNA-like clusters. Also the negative
training data set for k-NN is different each time, so there is
some randomness in its clustering.
Overall, we see that our scoring model works best with the

new s and e features. On the basis of the average scores, it
distinguishes existing from hypothetical graphs using new
features. The average scores are important for selecting suitable
threshold in clustering so that the RNA-like percentage is not
too low. In the prediction test, our scoring model with new
features achieves 82.35% and 88.24% accuracy for tree and
dual graphs, respectively. Though the accuracy is lower than
the 97.06% using K-means clustering, its RNA-like percentage
(49.49% and 33.31%) is lower than that of K-means (78.62%
and 71.15%).

■ DISCUSSION

We have developed a new way of defining feature variables for
RAG graph clustering using Fiedler vectors. This feature
selection is based on the one-to-one correspondence between
graph vertices and Fiedler vector components. By using the
slope s and the mean squared error e of the linear regression for
sorted and scaled Fiedler vector components, we find that
existing graphs tend to have low e values along with s values of
around 1. When we visualize the graph distributions with s and
e as planar coordinates, we see how this high concentration of
existing graphs at the bottom makes it easier for K-means
clustering to classify existing graphs into the RNA-like group.
As a result, we achieve a significant improvement in K-means
clustering accuracy. Only 4 out of 80 existing tree graphs are
misclassified, compared to at least 18 out of 79 misclassified
with prior variables. For dual graphs, only 2 out of 121 existing
are misclassified, compared to at least 29 out of 118
misclassified before. Moreover, these misclassified graphs all
have only 1 known RNA structure, while previously, some
graphs with large number of RNA structures were also
misclassified.
The current K-means misclassified graphs are shown in

Figure 10, with corresponding known RNA structures listed.
The 4 tree graphs were also misclassified31 using reduced linear
variables, but the 2 dual graphs were correctly classifed before.
The current misclassified graphs tend to have a large number
of vertices. These motifs tend to have junctions, and thus their
e values are higher. In K-means clustering, high e value graphs
are considered non-RNA-like. Because the database of known
RNAs has relating few higher-order junctions (five or more-
way junctions),39 clustering based on known structures will
inevitably be less accurate for graphs with higher-order
junctions.

Figure 9. Scoring model and k-NN prediction results using the three feature selections. The newly identified existing graphs are represented by red
dots if correctly classified as RNA-like and by red crosses if misclassified as non-RNA-like.
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For k-NN classification, our 10-fold cross validation
accuracy using the new features increases compared with full
linear variables, but the accuracy drops when comparing with
full quadratic variables, especially for tree graphs. In our prior
work,31 using all five (independent) quadratic variables
increased the accuracy by ∼7% compared to a partial set of
variables.
Our proposed scoring model for novel RNA motif selection

not only incorporates weights (number of known RNA
structures) for existing graphs but also allows setting a

threshold for top candidtates. This aspect is particularly
attractive for RNA design. We find that our new features work
best with the scoring model because the existing graph
distributions become more clustered. In Figure 11, we present
our top scored RAG hypothetical graphs using our scoring
model and s and e features. The parameters are σ = 1, ε = 5, r =
1.5. For tree graphs, the 42 candidates have scores of ≥90. For
dual graphs, the 70 candidates have scores of >99.9. We set a
such high threshold for dual graphs because there are 110 546
hypothetical dual graphs up to 9 vertices. As we see from
Figure 11, our candidates cover a wide range of number of
vertices n (most small graphs are existing). Tree graph
candidates with both branched structures and highly linear
structures appear. This indicates that our algorithm does not
have bias for graphs for small n or highly linear folds. We hope
to explore design of these candidates in future work.
Another potential use of our scoring model is to find similar

existing motifs for a given graph. This can be useful for
mutation experiments where we seek to change an RNA 2D
structure into an alternative, similar graph topology. In our
scoring model, scores that a graph receives from all existing
motifs are calculated. Existing motifs that are closer to the
graph with heavier weights contribute more scores, and these
motifs are considered more similar to the given graph. Hence,
we can rank the existing motifs in descending order in score.
We can adjust the parameters σ and ε in eq 1 as appropriate

(see Methods for more details on parameter value choices).
We can also limit the search range to search for existing motifs
with vertex number n close to that of a given graph. For
example, by setting σ = 1, ε = 15, r = 1.5 (we increase ε here to
reduce the impact of weights, since we are more interested in
graph topology similarity) and limiting n to be between 6 and
8, we can perform a motif search for tree graph 7_5. The top 6
similar tree motifs found including 7_5 are shown in order

Figure 10. Graphs misclassified as non-RNA-like by K-means using
new s and e features. The corresponding known RNA structures are
shown, with stems in red.

Figure 11. Top scored RNA-like candidates using new clustering variables s and e. We show the tree graph candidates with scores of ≥90 and dual
graphs with scores of >99.9.
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from left to right in Figure 12a. For each motif, the number of
corresponding known RNA structures is written below.
Using the same parameter values and limiting n to be 3, we

perform a motif search for dual graph 3_6. The existing motifs
are listed in Figure 12b in descending order of similarity from
left to right, and their numbers of corresponding known RNA
structures are given below. We see that motifs with more
known RNAs are not always ranked the highest. In our recent
work on the SARS-CoV-2 RNA, we defined minimal mutations
that transform a FSE pseudoknot (Figure 2b) with dual graph
3_6 to 5 of the other existing motifs.29 The top 3 motifs 3_3,
3_2, and 3_5 require only 2 minimal mutations, while motifs
3_8 and 3_1 require 4 mutations. Here, in agreement, we see
higher rankings for 3_3, 3_2, and 3_5 than the other two
motifs.
One area for improvement is to systematically find optimal

parameters and threshold for our scoring model. By combining
our new feature selection and scoring model, we can identify
top RAG graph candidates for novel RNA design and help
identify similar motifs to define mutation targets.
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