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Modeling and simulation have quickly become equivalent pillars of research along with traditional theory and experi-
mentation. The growing realization that most complex phenomena of interest span many orders of spatial and temporal
scales has led to an exponential rise in the development and application of multiscale modeling and simulation over
the past two decades. In this perspective, the associate editors of the International Journal for Multiscale Computa-
tional Engineering and their co-workers illustrate current applications in their respective �elds spanning biomolecular
structure and dynamics, civil engineering and materials science, computational mechanics, aerospace and mechanical
engineering, and more. Such applications are highly tailored, exploit the latest and ever-evolving advances in both
computer hardware and software, and contribute signi�cantly to science, technology, and medical challenges in the
21st century.
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1. INTRODUCTION

Our world is fundamentally multiscale. Relevant phenomenaspan the gamut of atomic physics to evolutionary biology
and astrophysics. Multiscale models and simulations allowus to probe the various spatial and temporal features
of molecules, organs, materials, networks, populations, nuclear reactors, and much more with growing precision
and reliability. Both software (algorithms) and hardware (parallel and distributed computers, graphics processors,
cloud computing, etc.) have been instrumental in making thecomputational time advances needed to tackle real-life
complex problems (Schlick and Portillo-Ledesma, 2021). Moreover, human ingenuity/intuition together with growing
data resources have allowed us to implement machine-learning and arti�cial-intelligence techniques as part of these
multiscale model and simulation programs in many �elds as never before. There is no doubt that the role of multiscale
modeling and simulation will only increase in the coming years. It warrants an academic discipline in its own right,
on par with basic sciences.

While aspects of multiscaling have existed for decades (see, for example, the biomolecular section below), the
exponential rise of the discipline has been notable only in the past 20 years. Using the query search words “multi-
scale” and “multiscaling” in the SCOPUS database (within the title, key words, and abstract of the article), we obtain
a clear picture of this tremendous growth. Figure 1 shows thevolume of these multiscale papers (left) and the citation-
weighted volume of these papers (right) per year, indicating a sharp rise since 2005, with slopes of marked increases
around 2004 and again in 2012. A dissection of these papers into the 20 disciplines and scienti�c journals with the
most papers in Fig. 2 shows engineering leading the way, followed by computer science, physics and astronomy, ma-
terials science, mathematics, earth and planetary science, chemistry, environmental science, biochemistry/molecular
biology, chemical engineering, and medicine. The decomposition by journals where these multiscale papers reside
indicates top representatives inProceedings of SPIE (International Society of Optical Engineering), Lecture Notes
in Computational Science & Engineering, Computational Methods in Applied Mechanics & Engineering, Journal of
Computational Physics, andMultiscale Modeling & Simulation. The next six journals that are close to one another
in paper volume includeInternational Journal of Numerical Methods & Engineering, AIP Conference Proceedings,
Journal of Chemical Physics, IEEE Transactions on Image Processing, Geophysics Research Letters, and our own
International Journal for Multiscale Computational Engineering (IJMCE).

In this perspective article, the associate editors ofIJMCE and their co-workers illustrate the value of multiscal-
ing in their respective �elds, from biology to mechanics andmaterial design, providing a glimpse into important
applications today, and both the algorithms and computer hardware that play a signi�cant role in their success.

FIG. 1: The volume of papers and citation-weighted papers from the SCOPUS database with the query words “multiscale” or
“multiscaling” in article title, key words, and abstract
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FIG. 2: The 20 scienti�c disciplines and journals associated with most of the multiscale papers in Fig. 1

2. MULTISCALING IN BIOMOLECULAR MODELING AND SIMULATION (T .S AND S.P.-L.)

2.1 Biological, Temporal, and Spatial Scales

Several years ago, the Department of Energy held a workshop to discussScienti�c Grand Challenges: Opportunities
in Biology at the Extreme Scale of Computing(Schlick and Department of Energy, 2010). As a member of the panel
discussing these important issues, T.S. recalls the excitement in the biological community as we discussed in 2009
how computer science and telecommunication disciplines were advancing to produce transformational technologies
with far-reaching impact on science, society, and human health. There is no better time to realize these key in�uences
as we enter the middle of the second year of the COVID-19 pandemic that has altered almost every aspect of our lives.
Indeed, the anticipated breakthroughs from the marriage ofthe biosciences and powerful cyberinfrastructures have
been realized by the enormous impact of predictive modeling, medical technology, and vaccine development in warp
speed. Many of these developments were made possible by multiscale modeling, required to study the structures,
motions, and functions of large biophysical systems such asviral RNAs and viral proteins in their complex cellular
milieu [see Introduction in Schlick et al. (2021b) and volume preface in Schlick et al. (2021d)].

As illustrated in Fig. 1 in the DOE report, reproduced here inFig. 3, biological system sizes span from thousands
of atoms in proteins, RNAs, and other macromolecules to the order of 1010 atoms in whole cells. The associated
relevant timescales of motion range from femtoseconds to minutes and longer. This necessitates appropriate reduc-
tion, approximation, and integration of modeling at different levels. Bridging these scales requires connections that
telescope the �ndings from one level to the other, so that we simulate the functional dynamics associated with those
systems, investigate processes involving many biomolecules, and pursue the cellular implications of these processes.
Algorithms such as enhanced sampling, data science tools like trajectory management and visualization, and exascale
hardware facilities play crucial roles in these multiscaleapproaches.

The DOE report highlights how the functioning of biologicalnanomachines that take part in the basic processes
of life can be divided into four categories of increasing spatial/temporal complexity:protein folding and RNA folding;
biochemical binding and reaction mechanisms, such as enzyme catalysis and protein/ligand interactions; macro-
molecular pathways, including DNA replication and repair �delity, protein synthesis, chromatin organization, and
RNA editing; andsupramolecular cellular processes, such as protein signaling networks, plant cell-wall formation,
and endocytosis. Separable tools that “admit a variety of time, space, and trajectory sampling methods (and fully ex-
ploit the hundreds of millions of cores expected on an exascale machine) will enable long time integrations, implicit
solvation conditions, and mixed molecular mechanics and quantum mechanics models” (Schlick and Department of
Energy, 2010).
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FIG. 3: Multiscale areas relevant to biology. Reproduced from the 2009 DOE report Schlick and Department of Energy (2010)

The most challenging aspect of modeling biomolecules is that all these motions on different spatial and temporal
scales are intimately coupled. This makes many approaches like implicit integration methods in chemical kinetics
inadequate because the fast processes are not decaying but rather oscillatory. This has been the problem mainly
known as the timescale problem in molecular dynamics integration (Schlick, 2010).

Although some integration approaches for molecular dynamics have helped alleviate the severe timestep re-
quirement for biomolecular dynamics integration, the realimprovement has come from both hardware advances and
coarse-grained/multiscale models. In the latter, rather than treating individual atoms, groups of atoms are modeled.
This simpli�cation facilitates the molecular representation but also requires development of new force �elds for these
reduced-atom models. This multiscale approach was �rst described in computational biology with simpli�ed protein
models and hybrid molecular mechanics/quantum-mechanical models for chemical reactions that were recognized
in the 2013 Nobel Prize in Chemistry awarded to Martin Karplus, Michael Levitt, and Arieh Warshel [see Schlick
(2013), for an article on the signi�cance of this award for computational biology]. Interestingly, machine-learning
approaches are now replacing the computationally expensive quantum-mechanics component.

2.2 Coarse-Grained Models

Many coarse-grained and multiscale models of biological systems are used today, including for proteins, RNAs,
DNAs, membranes, and other biomolecules, as described in two recent perspectives—Schlick and Portillo-Ledesma
(2021) and Schlick et al. (2021a). While coarse-grained models involve a simpli�ed representation of the system,
multiscale models integrate different levels of the system. An example of the former is a graph-theory representation
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to coarse grain RNAs as graphs, with important applicationsto the frameshifting RNA element of the COVID-19
RNA (Schlick et al., 2021b,c). By representing RNAs as graphs, the conformational space is vastly reduced from
sequence space to motif space. As motif space grows much moreslowly with RNA size than sequence space, graph
representations allow systematic exploration of motifs for design of novel RNA motifs and mutations. This feature
was exploited in recent computations of motif-altering minimal mutations of the frameshifting element of the SARS-
CoV-2 viral genome to de�ne targets for antiviral drugs or gene editing (Schlick et al., 2021b,c). Two examples of
multiscale modeling are a model for the SARS-CoV-2 virion, which includes the outer protein coat and its membrane
(Yu et al., 2021) and the multiscale chromatin model described below.

2.3 Multiscale Chromatin Model

Genome organization is a fascinating area of biology/biophysics which necessitates development of models on many
scales to study and bridge experimental data obtained from the chromatin �ber to chromosomes. In the cell nucleus
of eukaryotic systems, one billion base pairs are compressed into a polymeric complex associated with chromosomal
DNA, which has many levels of organization and features thatwe are just beginning to understand (see Fig. 4). The
condensation required spans many orders of magnitude to �t meters-long DNA when stretched into a cell nucleus of
micron diameter. This enormous condensation is achieved through formation of the chromatin �ber that makes up
chromosomes.

The DNA base pairs that de�ne up genomes are wound around protein cores like yarn around many spools to
form thechromatin �ber. At low salt, this nucleic acid/protein �ber is an open “beads-on-a-string” type polymer, but
at certain cell states it condenses greatly with the aid of auxiliary and remodeling proteins to form highly condensed
and folded states (Kornberg, 1977). At the kilobase level, or secondary structure of chromatin, zigzag topologies
are recognized, with self-associating �bers that have strong second-neighbor nucleosome connections (Grigoryev et
al., 2016). These arrangements are heterogeneous with variable sizes, as expected from a �oppy polymer in solution
(Ou et al., 2017). At the level of megabases of DNA base pairs,these chromatin assemblies form loops and com-
partment domains that have unique functional roles associated with speci�c genes (Lieberman-Aiden et al., 2009).
The chromatin �ber also displays various levels of condensation within the cell nucleus, for example, relatively open
euchromatin and condensed heterochromatin (Eagen et al., 2015). Furthermore, individual chromosomes are known

FIG. 4: The DNA folding problem. (Left) In eukaryotic cells, the DNAwraps around nucleosomes to form �bers, genes, and
chromosomes, at various levels of condensation, taken fromBascom and Schlick (2017). (Right) The different levels of DNA
folding can be studied by a variety of computational and experimental tools, but connection strengths (arrow color) areweaker for
some levels and along the upper diagonal arrow, taken from Ozer et al. (2015).
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to occupy distinct territories in the cell nucleus (Speicher and Carter, 2005). We are only beginning to understand
how these transitions from open to highly condensed states occur and how they are regulated by the cellular machin-
ery (Maeshima et al., 2020; Rowley and Corces, 2018). These different open and condensed states and associated
transitions are key, because all transcript-directed processes involving DNA require the DNA to be accessible to the
cellular machines and hence unraveled.

Over the past two decades, our group has developed an increasingly more detailed multiscale model of chromatin
to study genome properties at the �ber and gene levels (Bascom et al., 2018; Portillo-Ledesma and Schlick, 2020).
As new experimental data have become available, for example, regarding histone tails or linker histone asymmetry,
these features have been incorporated into our model, shownin Fig. 5.

The model combines different levels of coarse graining. TheDNA that connects the core nucleosome units
is coarse grained by beads, each of which represents about nine basepairs of double helical DNA. Coarse-grained
protein beads with a resolution of about �ve amino acids per bead are used to represent the �exible histone protein
tails and the linker-histone protein beads. These DNA and protein beads are then combined with an electrostatically
charged irregular surface approximation (Beard and Schlick, 2001) for the nucleosome core based on the crystal
structure so that each of the approximately 300-point charges can be used to collectively reproduce the electrostatic
properties of the atomistic nucleosome core particle. These units are combined, with experimental anchoring for the
relative positioning so that each bead and core has an associated Euler body-faced coordinate frame. These geometries
are used to compute the coordinates and energies of the system. The potential energy includes stretching, bending,
twisting, electrostatic, and exclusion-volume components. The conformational space of this complex system is then
sampled using equilibrium Monte Carlo, with local and global rotation and translational moves. Recently, Brownian
dynamics sampling has been added as well, allowing path sampling for small chromatin systems. A multiscaling
strategy was also used to incorporate the effects of epigenetic marks (Collepardo-Guevara et al., 2015).

In Fig. 6 we illustrate some recent biological applicationsof our chromatin model. These include formation
of nucleosome clutches, or groups of nucleosomes, during cell differentiation (Gómez-Garc�́a et al., 2021; Portillo-
Ledesma et al., 2021); epigenetic effects of histone tail acetylation on �ber openings (Collepardo-Guevara et al.,
2015); domain segregation in �bers composed of alternatingacetylated and wildtype tails (Rao et al., 2017); and the
effect of linker-histone reduction on tumorigenic progression of lymphoma cells (Yusufova et al., 2021).

The clutch study compares clutch patterns of uniform chromatin �bers that vary in the levels of acetylation, linker
histone density, and the position of nucleosomes to those of�bers that mimic a gene related to mouse development. It
dissects the role of each chromatin parameter in clutch regulation, indicating that a delicate combination of these three
parameters produces larger clutches upon differentiation[Fig. 6(a)] (Gómez-Garc�́a et al., 2021; Portillo-Ledesma et
al., 2021).

FIG. 5: Mesoscale chromatin model. Coarse-grained beads for the DNA linkers, �exible histone tails, and linker-histone unitsare
combined with a charged irregular surface model for the nucleosome core.
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FIG. 6: Recent mesoscale chromatin model applications. (a) The differentiation state of the cell is correlated to clutch patterns,
as illustrated here for neural cells at increasing differentiation from top to bottom (Portillo-Ledesma et al., 2021).(b) Chromatin
unfolds upon including acetylated tails in the chromatin mesoscale model (Collepardo-Guevara et al., 2015). (c) Chromatin com-
partmentalization is directed by the interactions betweensame-type tails (Rao et al., 2017). (d) A loss of linker histone produces a
looser �ber that can be easily transcribed, up regulating certain genes (Yusufova et al., 2021).

Notably, in the acetylation studies another level of multiscaling is utilized, where results of atomistic simulations
of dinucleosomes with acetylated tails are incorporated into the mesoscale chromatin model using more rigid tail
conformations with altered force constants (Collepardo-Guevara et al., 2015). Fibers with acetylated tails unfold due
to an impairment of the stabilizing internucleosome interactions [Fig. 6(b)], highlighting the role of these epigenetic
modi�cations in regulating chromatin openings (Rao et al.,2017). When these rigid tails are used to construct �bers
with alternating acetylated and wildtype tails, segregated nucleosome camps result, producing a “checkerboard” nu-
cleosome contact matrix [Fig. 6(c)]. Thus, epigenetic marks lead to chromatin segregation on this scale, connecting
local to global structure.

In the linker histone study, �bers modeled with different linker-histone densities explain the architectural chro-
matin changes that lead to lymphoma upon linker-histone loss. Lower linker-histone densities produce a transition
from a straight and rigid structure, with almost no long-range interactions, to a loose and �exible �ber that can be
easily transcribed, increasing the expression of genes that should be silenced [Fig. 6(d)] (Yusufova et al., 2021).

Such combinations of coarse-graining and multiscaling will need to be combined and developed in new ways
in the future to tackle problems on higher scales of genome organization and to understand chromatin loops on the
megabase level and chromosomal domains. At present, many simple polymer models are being applied to study
chromosomal arrangements, but these cannot include key internal and external parameters of chromatin �bers, such
as linker-histone densities, irregularly nucleosome positions, acetylation islands, and so on, which are crucial to
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interpret chromatin structure and function from �rst principles. Our challenge will be to develop ways to achieve
both inclusion of relevant local parameters and achievement of large-scale views. Connecting these many levels will
require innovative ways of multiscaling combined with advanced simulation methodology.

3. ELECTRO-MECHANICAL MULTISCALE MODELING OF CANCELOUS BO NE (M.B. AND K.H.)

Multiscale modeling is also important for simulating bones, which are subjected to mechanical, electrical, and mag-
netic effects. An important medical application of this model is the use of sonography as a noninvasive diagnosis tool
for the early detection of osteoporosis (Kaufman et al., 2008), a bone disease that weakens the bone, increasing the
likelihood of fractures.

In recent decades, scientists with different backgrounds who studied bone material developed different ap-
proaches to simulate bone behavior. Scienti�cally, bone isan interesting material with impressive properties. It is
strong and possesses a high stiffness and fracture toughness, while also maintaining a light weight (Hamed et al.,
2010). As a composite material, cancelous (spongy) bone consists of small beams or shells of interconnected cortical
bone and interstitial bone marrow. Thus cancelous bone possesses a very complex and heterogeneous microstructure,
ideal for multiscale modeling.

We employ the �nite element square method (FE2), which extends the standard �nite element method (FEM) by
applying the multiscale concept and solving the differential equation systems on two scales via the FEM. See method
overview in Miehe et al. (1999) and Schröder and Hackl (2013). Examples from the domains of biomechanics and
electromechanics are given in Chapelle et al. (2012) and Vallicotti et al. (2018). Applications of the FE2 within the
scope of bone modeling can be found in Biswas et al. (2019), Gilbert et al. (2007), Pahr and Zysset (2008), and
Ilic et al. (2010). Instead of including microheterogeneities directly, which would require an extremely �ne mesh
resolution, a second, smaller scale is introduced to solve the problem. Assuming the material is statistically regular
on the smaller scale, it can be modeled by a corresponding representative volume element (RVE). Here we denote
the larger scale as the macroscale and the smaller scale as the microscale. For the calculations, instead of using a
macroscopic material model, the state variables are assigned as microscale, where they are used to solve the RVE
problem. These microscale calculations then yield average�ux quantities and consistent tangent matrices for the
solution of the macroscale problem.

While past research often focused only on the mechanical properties of bone, our model includes the complete
coupling of electrical and magnetic effects as well. Cortical bone is mainly composed of elastic collagen �bers acting
as charge carriers. When a shear stress is applied, these collagen �bers slip past each other, thus producing the
piezoelectric effect (Fukada and Yasuda, 1957). This meansthat whenever a mechanical strain is present in the bone,
an electric �eld is generated due to the piezoelectric effect. A time-dependent �uctuation of the electric �eld then
creates a magnetic �eld due to Amp�ere's circuital law, coupling mechanical, electrical, and magnetic effects together.
For our modeling we assume a heterogenous material consisting of two phases, cortical bone and bone marrow.

As stated above, an important application of bone modeling is the early detection of osteoporosis. Compared
to a healthy bone, the volume fraction of cortical bone for a degenerated bone can be reduced from 30% to 5%
(Ilic et al., 2010; Steeb, 2010). Figure 7 shows a comparisondepending on the osteoporosis stage and illustrates the
heterogeneity of the material. During the course of osteoporosis, the cortical bone (represented brighter) reduces and
is replaced by bone marrow (represented in dark). Thus we will employ different RVEs for the simulations. Here the
cortical bone phase is represented in gray, while the bone marrow phase is drawn in transparent red color.

Early detection of osteoporosis can be done via sonography:ultrasonic waves enter the bone and due to the
described effects create a magnetic �eld, which can be measured (Güzelsu and Saha, 1981). Depending on the results,
conclusions on the health status of the investigated bone can be drawn.

We model bone as a heterogenous material consisting of two phases, cortical bone and bone marrow, see
Blaszczyk and Hackl (2021a,b). Cortical bone is modeled as piezoelectric, insulating solid bone marrow as vis-
coelastic, conducting solid. Electrical and magnetic effects are coupled via the Maxwell equations. Based on energy
methods in mechanics, we establish a thermodynamically consistent material model and derive the weak and strong
form of the corresponding boundary-value problem. We splitthe domain
 := 
 y , representing the RVE of the
micro problem, into a cortical bone part
 b and a bone marrow part
 m . For any quantity, the indices(�)m and
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FIG. 7: Bone phases depending on osteoporosis stage (cf. Laboratoires Servier, 2019) and corresponding RVEs

(�)b are used to denote the af�liation to each phase. If no index ispresent, the quantity or equation is valid for both
phases.

We employ a thermodynamic energy functional at the microscale, which contains the energy densities	 b and
	 m of both phases, a volume constraintC, dissipation and gauge functionals (� and	 g), and the potential of the
generalized external forcesWext . The main variables of the problem are then the mechanical displacementsu, the
electric scalar potential' , and the magnetic vector potentialA , yielding seven unknown variables for the three-
dimensional model. The state variables are the mechanical strain " , the electric �eldE, and the magnetic �ux density
B , which can be calculated from the main variables. Then two ofthe four Maxwell equations are already satis�ed.

The energy densities for both phases consist of quadratic energies for mechanical, electrical, and magnetic effects,
resulting in a linear problem. We include a piezoelectric energy term for the cortical bone phase. For the bone marrow
phase, an inelastic strain" i and the viscosity parameter� � 1

v are introduced. The constraint function enforces volume
conservation of the inelastic deformation. The dissipation function governs the evolution of the inelastic strain and
the energy loss due to conduction, which both occur only in the bone marrow phase. The gauge function ensures that
a unique solution for the magnetic vector potentialA is obtained by penalizing its divergence, effectively requiring
that r � A vanishes and thus improving the numerical stability (Semenov et al., 2006). The penalty parameter
 is
a numerical parameter used to control the gauge term. Finally, the potential of generalized external forces containsf
andt , the mechanical volume and surface forces,qv andqs, the electric volume and surface charges, andj v andj s,
the volume and surface currents. By calculating the derivative of the energy density with respect to the state variables,
we �nd the constitutive equations, from which we calculate the material tensorsC (mechanical stiffness tensor),�
(permittivity tensor),� � 1 (inverse permeability tensor),e (piezoelectric tensor), and� (electric conductivity tensor).
We derive the �ux quantities mechanical stress� , electric displacementD , magnetic �eld strengthH , and the electric
current densityJ. For the cortical bone phase, the viscosity parameter� � 1

v and the electric conductivity tensor�
vanish.

We use the stationary condition of the energy functional to calculate the weak and strong form of the problem.
The weak form is later used to apply the FEM. For the strong form, we obtain the mechanical equilibrium condition,
the two remaining Maxwell equations, and boundary conditions, including the gauge. Additionally, we receive the
jump conditions between the phases on the interface@
 bm and the evolution equation of the inelastic strain. The time
integration of the evolution equation is achieved by applying the explicit Euler method.
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To connect the macro- and microscale in FE2, it is important to discuss the transition between the scales. The
Hill–Mandel conditions (Hill, 1963) have to be ful�lled, guaranteeing energy conservation during the scale transition,
i.e., the virtual work on the macroscale has to be equal to thevirtual work on the microscale.

For the macro-to-micro transition, we ful�ll these conditions by using periodic boundary conditions on the mi-
croscale, as they are the only type of boundary condition where the results on the microscale are independent from
the relative geometry of the RVE (Schröder and Hackl, 2013). Additionally, as the RVE is periodic in space, this type
of boundary condition is the most suitable (Ilic et al., 2010). The micro state variables consist then of two parts: a
term resulting from the microscopic main variables [denoted by ~(�)], whose �uctuations are calculated, and a term
contributed by the macroscale:

" = ~" (y ) + " (x); E = ~E(y ) + E(x); and B = ~B (y ) + B (x): (1)

This way we calculate the �ux variables on the microscale. For the micro-to-macro transition, the volume average of
these �ux quantities is sent back to the macroscale:

� (x ) =
1



Z




� (y )dV; D (x) =
1



Z




D (y)dV; _D (x) =
1



Z




_D (y)dV;

H (x) =
1



Z




H (y)dV; and J(x) =
1



Z




J(y )dV:

(2)

Additionally, in this model energy dissipation is considered in two ways. For the electric currentJ, the average
is calculated and included in the scale transition, resulting in no energy loss during the scale transition. For the
inelastic strain" i , the complete state in every point and for every RVE is saved.Thus the dissipation occurs only
on the microscale and the energy conservation is ful�lled, as the virtual work send to the microscale is equal to the
virtual work send back added to the energy dissipation on themicroscale. With the �ux variables available on the
macroscale, it is now possible to obtain the macro residual for the Newton–Raphson method and the calculation of
consistent macro tangent moduli remains, which are needed for the iteration.

The calculation is performed by applying a small numerical perturbation� tol = 10� 8 to each entry of the
corresponding state variable and then calculating each entry of the macroscopic tangent tensors by evaluating the
perturbed �uxes� pi ; D

pi ; H
pi ; J

pi by means of the RVE. Since for our model the same RVE is used everywhere
and the nonlinearity from the inelastic strain is very small, this calculation has to be done only once for all RVEs and
all time steps, making this approach very ef�cient. Together with the calculated macro state variables, this allows the
macroscopic FE problem to be solved.

We use the same parameters for both scales. Here the time-step increment is� t = 1 � 10� 3 s, the Newton–
Raphson tolerance istolN = 1 � 10� 8, and the gauge penalty parameter is
 = 1.0 s2A2/(kg m).

The default material parameters used are shown in Table 1. Young's modulus and Poisson's ratio for both phases
can be found in Steeb (2010). All other parameters are of a rather academical nature and in�uence the results only

TABLE 1: Default material parameters

Material parameter Cortical bone Bone marrow

Young's modulus E 22.0 GPa 2.0 GPa
Poisson's ratio � 0.32 — 0.3 —
Permittivity � 1 8.85� 10� 12 F/m 8.85� 10� 12 F/m
Permeability � c 1:257� 10� 6 H/m 1.257� 10� 6 H/m

Piezoelectric coef�cient e15 3.0� 10� 3 A s/m2 0 A s/m2

Electric conductivity � 1 0 S/m 1.0� 104 S/m
Viscosity parameter � v 0 s/GPa 5.0� � t s/GPa
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marginally. We assume linear isotropic material everywhere, excluding the piezoelectric tensor, which is preferential
in thez-axis due to the longitudinal orientation of the collagen �bers.

We restrict ourselves to microscale simulations. For our �rst example, we use a degenerated bone RVE with
� b = 5.3%. We compare different mesh resolutions. The �rst RVE consists of six elements for each spatial direction.
The second RVE consists of 12 elements for each spatial direction. We apply a macroscopic strain" yz = 1 � 10� 5.
Figure 8(a) shows the results of the simulations.

Both simulations show quadratic convergence behavior and periodic results. For both quantities, the results be-
tween the two different used meshes look nearly identical, con�rming mesh independence of the results.

To compare periodic RVEs for different stages of osteoporosis, we created six different RVEs with the same total
volume ofVRVE = 1 mm3 and� b 2 f 5.3%, 10.4%, 14.5%, 19.1%, 24.2%, 29.5%g. The macroscopic mechanical
stiffness tensorC := @� =@" was now evaluated for all RVEs by applying a small numerical perturbation. Then we
calculate the effective Young's modulus as

Ee� =
C44

�
3C12 + 2C44

�

C12 + C44
: (3)

Figure 8(b) shows a plot of the macroscopic Young's modulus against the volume fraction of cortical bone. Here we
observe a drastical reduction of the macroscopic Young's modulus with decreasing cortical bone fraction. Compared
to a healthy bone (� b = 29.5%), the effective Young's modulus of the degenerated bone (� b = 5.3%) decreases to
57% (from 3.89 to 2.32 GPa). Similar results can be found in Ilic et al. (2010).

As a second example, we performed multiscale simulations ona true-to-scale model of a human femur bone.
Here we applied a time-dependent mechanical displacement with amplitudeumax = 2 � 10� 6 to the middle section
of the bone and calculate 100 timesteps (� t = 1 � 10� 2 s), comparing the degenerated bone (RVE 1,� b = 5.3%)
to the healthy bone (RVE 6,� b = 29.5%). Figures 9 and 10 show the results of the simulations.All quantities
drastically decrease for the degenerated bone. Compared tothe healthy bone, the average magnetic �eld strength for
the degenerated bone reduces to only about one-third.

Our fully coupled multiscale model of cancellous bone considered mechanical, electrical, and magnetic effects.
Both micro- and multiscale simulations yield good results.By using the FE2, we were able to perform multiscale
simulations of a true-to-scale human femur bone model, which can help to better understand experimentally observed
time effects on bone. For future research we aim to solve the inverse problem—recovery of the distribution of cortical
bone phase from magnetic �eld data—by using an arti�cial neural network to predict simulation outputs. Additionally,
wave propagation in cancellous bone will be investigated.

4. STABILIZED AND VARIATIONAL MULTISCALE METHODS FOR MULTI PHYSICS PROBLEMS
(A.M.)

Advances in computational resources have made numerical simulations an indispensable tool across engineering
and sciences. Of great contemporary interest are problems that are governed by multiple coupled partial differential

(a) (b)

FIG. 8: Microscale simulation results of a coarse and �ne mesh (leftand right resp.) (a) Left:� xy [GPa], right:D [A s/m2].
Effective Young's modulusEe� against cortical bone volume fraction� b for different RVEs (b).
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(a) (b)

FIG. 9: Simulation results of the femur bone model for the degenerated (top) and healthy RVE (bottom),t = 25. Left: � xy [GPa],
right: D [A s/m2].

(a) (b)

FIG. 10: Simulation results of the femur bone model for the degenerated (top) and healthy RVE (bottom),t = 50. Left:H [A/m],
right: J [A/m2].

equations (PDEs) on overlapping and/or on adjoining subdomains. These problems are invariably multiscale be-
cause of the multiple coupled balance laws with their associated material, spatial and temporal scales. The drive for
developing high-�delity computational methods for complex multiphysics problems has led to several successful ap-
proaches. Among the various successful efforts to develop high �delity computational methods is the development
of the class of stabilized methods. The underlying philosophy of the stabilized methods is to strengthen the classi-
cal variational formulations so that discrete approximations, which would otherwise be unstable, become stable and
convergent. The origins of stabilized methods can be tracedback to the early 1980s, when Hughes and colleagues
realized the issue of lack of stability of the Galerkin method for advection-dominated diffusion problems. To correct
this de�ciency in the standard Galerkin approach, the streamline-upwind-Petrov–Galerkin (SUPG) method was pro-
posed (Brooks and Hughes, 1982). The SUPG method turned out to be the forerunner of a new class of stabilization
schemes, namely, the Galerkin/least-squares (GLS) stabilization methods (Hughes and Franca, 1987). In the GLS
method a least-squares form of the residuals that is based onthe corresponding Euler-Lagrange equations is added
to the Galerkin �nite-element formulation. A general theory of the stabilized methods was developed, and success
was achieved on a variety of problems. Concurrently, another class of stabilized methods that is based on the idea of
augmenting the Galerkin method with virtual bubble functions, called the residual-free bubbles (RFB) approach, was
introduced by Brezzi et al. (1997, 1998). In the mid-1990s, Hughes revisited the origins of the stabilization schemes
from a variational multiscale viewpoint and presented the variational multiscale method (VMS) (Hughes, 1995).
In this method the different stabilization techniques cometogether as special cases of the underlying subgrid-scale
modeling concept.

The VMS method (Hughes, 1995; Hughes et al., 1998; Masud and Franca, 2008; Masud and Hughes, 2002;
Masud and Scovazzi, 2011), which is an offspring of the earlier developments of stabilized methods, is based on an
underlying subgrid-scale modeling concept. The key idea inthe VMS framework is to perform a mathematical nesting
of the �ne scales into the coarse scales, thereby providing arobust framework wherein all the important features of
the total solution are consistently represented in the computed solution. It is facilitated by ana priori direct sum
decomposition of the space of functions into coarse- and �ne-scale space. This decoupling leads to a decomposition
of the physical and computational scales into two overlapping components that are categorized as coarse scales and
�ne scales, respectively.

Typically, the coarse scales are expanded via the traditional �nite-element shape functions, while the �ne scales
that lie in an in�nite-dimensional space, are de�ned to be the remaining part of the solution. The decoupling of
the spaces of functions leads to the decomposition of the problem into two subproblems, namely, the coarse-scale

International Journal for Multiscale Computational Engineering



Multiscaling, from Biology to Engineering 51

subproblem and the �ne-scale subproblem. The modeling aspect in the method lies in extracting the �ne-scale solution
from the nonlinear �ne-scale subproblem. This �ne-scale solution is then variationally projected onto the coarse
scales (see Fig. 11). Although the �nal formulation does notdepend explicitly on the �ne-scale �elds, the effects of
�ne scales are consistently represented via the additionalresidual-based terms.

There are two dominant approaches in the VMS methods: (i) theGreen's function approach (Bazilevs et al., 2007;
Codina et al., 2007; Franca et al., 2006; Hughes, 1995; Hughes et al., 1998), and (ii) the bubble-functions approach,
applied directly to the �ne-scale variational equation (Masud and Calderer, 2009; Masud and Franca, 2008; Masud
and Scovazzi, 2011). The Green's-function-based approachwas applied successfully to stabilize �uid-�ow problems
and drive residual-based turbulence models (Bazilevs et al., 2007; Codina et al., 2007; Colomés et al., 2015). The
latter approach, which is a generalization of the RFB method(Brezzi et al., 1997, 1998), was developed by Masud
and co-workers to derive stabilized formulations for a variety of mixed �eld problems (Masud and Calderer, 2009,
2011, 2013; Masud and Khurram, 2004; Masud and Truster, 2013; Masud et al., 2012). A unique feature of this class
of methods is that the solution of the �ne-scale variationalequation does not requirea priori assumptions on the
structure of the subgrid scale. Subsequently, the hierarchical VMS framework was proposed in Masud and Franca
(2008) and Masud and Scovazzi (2011), which resulted in variationally derived closure models for incompressible
turbulent �ows (Calderer and Masud, 2013; Masud and Calderer, 2011; Masud and Zhu, 2021), as shown in Figs. 12
and 13.

The VMS framework when viewed from the perspective of subgrade-scale physics provides a platform for varia-
tional coupling of multiple PDEs on concurrent and/or adjoining subdomains. Embedding ideas from the discontinu-
ous Galerkin (DG) method in the bubble-enriched VMS framework, Masud and co-workers presented the variational
multiscale discontinuous Galerkin (VMDG) methods (Masud et al., 2012; Truster and Masud, 2014; Zhu and Masud,
2021) with rigorous treatment of the continuity conditionsthat are critical to numerical and algorithmic stability. The
VMDG method facilitates variational embedding of the �ne-scale interface models in a mathematically consistent
fashion, admits common element types, and is free of user-de�ned tuning parameters (Calderer and Masud, 2013;
Chen et al., 2020; Masud and Truster, 2013; Truster and Masud, 2014; Zhu and Masud, 2021). The enhanced sta-
bility of the VMDG framework enables the treatment of various interface kinematics, such as nonmatching mashes

FIG. 11: Schematics of the VMS method

FIG. 12: Turbulent �ow around immersed sphere at Reynold's number Re= 10,000
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FIG. 13: Density strati�ed Plane Couette �ow

in domain decomposition or substructure modeling, contactand friction in mechanical systems, and delamination at
bimaterial interfaces in composites (Fig. 14).

The complexity engendered by mixed �eld problems increasesthe challenge of validating the numerical solution
and quantifying uncertainty in these simulations. A signi�cant attribute of the VMS and VMDG methods is that they
come equipped with built-in error estimation module (Haukeand Garcia-Olivares, 2001; Hughes et al., 1998; Masud
and Truster, 2013; Masud et al., 2012), which can help with veri�cation and validation of the models and the method.
The fundamental mathematical constructs in these works transcend the traditional �uid and solid/structural mechanics
subdisciplines and therefore yield numerical methods withenhanced stability properties for application to coupled
�eld problems in engineering and sciences.

5. A MULTIRESOLUTION WAVELET METHOD FOR MULTISCALE AND MULT IPHYSICS
APPLICATIONS (C.H., L.D., K.M., AND D.L.)

Many useful computational science and engineering applications must solve PDEs with spatial and temporal scales
across many orders of magnitude. For example, models of asteroid impacts (Boslough et al., 2015), supernova rem-
nants (Malone et al., 2014), detonation combustion (Cai et al., 2016), the global ocean (Ringler et al., 2013), and the
mechanics of materials (Matou�s et al., 2017) are inherently multiphysics and multiscale. Various innovative numeri-
cal methods have been developed to address this computational challenge. For example, multigrid methods (Brandt,
1977; Yushu and Matou�s, 2020), Chimera overset grids (Benek et al., 1989), remeshing/re�ning �nite-element meth-
ods (FEM) (Gui and Babu�ska, 1986; Rajagopal and Sivakumar,2007), and adaptive mesh re�nement (AMR) (Berger
and Oliger, 1984; Fatkullin and Hesthaven, 2001) have achieved a great deal in contemporary computational mod-
eling. However in many of these algorithms it is desirable toknow a priori where the spatial and temporal re�ne-
ment will be required; otherwise they become computationally expensive. In this work we advocate a wavelet-based
method, which is well suited for problems with dynamically adapting spatial and temporal scales.

FIG. 14: Interfacial kinematic models, progressive interfacial failure, and the VMDG method
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Wavelet-based numerical methods are particularly convenient for multiscale and multiphysics modeling because
the multiresolution basis functions naturally provide adaptivity (Jawerth and Sweldens, 1994; Schneider and Vasilyev,
2010). To date, wavelet algorithms have been used in stochastic system modeling (Kong et al., 2016), multiscale
model reduction (van Tuijl et al., 2019), solutions to coupled systems of nonlinear PDEs (Dubos and Kevlahan, 2013;
Nejadmalayeri et al., 2015; Paolucci et al., 2014; Sakurai et al., 2017), bounded energy conservation (Qian and Weiss,
1993; Ueno et al., 2003), and signi�cant data compression (Bertoluzza, 1996; Beylkin and Keiser, 1997; Liandrat and
Tchamitchian, 1990). However, some implementations have had various restrictions, such as only solving PDEs with
periodic or in�nite domains (e.g., Fröhlich and Schneider, 1994; Goedecker, 1998; Iqbal and Jeoti, 2014), using
computationally expensive dense grids (e.g., Le and Caracoglia, 2015; Lin and Zhou, 2001; Qian and Weiss, 1993),
or requiring the use of �nite difference operators for spatial derivatives, inhibiting the ability to solve PDEs in the
wavelet domain and control accuracy of numerical differentiation (e.g., Holmström, 1999; Nejadmalayeri et al., 2015;
Paolucci et al., 2014).

Therefore, we have developed an algorithm designed to avoidthe limitations of past wavelet methods while
retaining their merits. Mathematical details regarding wavelet theory and the application of wavelets to the solution
of PDEs can be found in Harnish et al. (2018, 2021). Here we describe a brief overview of our numerical method and
demonstrate its capabilities on a multiscale and multiphysics example from Harnish et al. (2021).

5.1 Wavelet Theory and Numerical Implementation

Our algorithm is designed to solve initial boundary-value problems with error control on �nite domains using a sparse
multiresolution spatial discretization. In each application the initial conditions are projected onto the wavelet basis
� 0

~k (~x) and �  j
~k
(~x), where~� indicates a vector. For example, the wavelet representation of a continuous function
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In Eq. (4), wavelet coef�cients� dj
~k

with magnitudes below a threshold" are discarded along with their corresponding
collocation points. Forward and backward wavelet operations are performed in our implementation using sparse,
banded matrix operators. Additionally, the� th-order spatial derivatives in thei direction are applied directly to
the continuous wavelet basis functions through the use of a matrix operatorD(x i ;� ) . This process creates a sparse
multiresolution spatial discretization where the spatialerrors for �elds and their derivatives are given by

kf (~x) � f " (~x)k1 � O (" ) and





 f (x i ;� ) (~x) � D (x i ;� ) f " (~x)








1
� O

�
" 1� � =p

�
; (5)

wherep is an even integer that de�nes the order of the basis functions. Derivations of the error estimates and details
regarding the construction of the matrix operators can be found in Harnish et al. (2018).

After projecting �elds and their derivatives onto the wavelet basis, the PDEs are transformed into ordinary differ-
ential equations (ODEs) in time. Next, an explicit, embedded, Runge–Kutta time integration scheme (Fehlberg, 1970)
is used to convert the ODEs into algebraic equations. This procedure updates the solutions from the time stepn to a
trial time stepn + 1� . Moreover, this update provides an estimate of the temporalerror and adjusts the time-step size
� t such that the temporal error is of the same order as the spatial error [i.e.,O(" )]. A predictor-corrector strategy is
used to iteratively insert new collocation points into the sparse discretization during temporal integration to ensure
that the spatial accuracy remains bounded at each time step.When the trial time step is accepted as the true time step,
some wavelet coef�cients are no longer needed to satisfy theerror bounds and their collocation points are pruned from
the sparse computational grid as it evolves with the solutions of the PDEs. This algorithm has been implemented in
the Multiresolution Wavelet Toolkit (MRWT) written using modern C++ and is multithreaded using OpenMP. The
data structures are designed to leverage temporal and spatial locality, and are trivially vectorizable for right-hand-side
computations. The core matrix operators for wavelet transforms and spatial derivatives are stored mostly matrix-free,
with stencil contractions that are trivially parallelizable and scale well.
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5.2 Numerical Examples

Various examples verifying the implementation of the algorithm described in Section 5.1 have been published in
Harnish et al. (2018, 2021). Here we demonstrate the multiscale and multiphysics capabilities utilizing the Taylor-
Sedov blast-wave setup, where the energy pulse is depositedin a compressible �uid, leading to the development of a
spherical shock wave. This example requires solving the coupled system of nonlinear PDEs given by the conservation
of mass, momentum, and energy:

@�
@t

= �r � (� ~v); (6)

@
@t

(� ~v) = �r � (� ~v 
 ~v � � ) + � ~b; (7)

@
@t

(� ee) = �r � (� ee~v� � ~v + ~q) + � ~b� ~v + � r; (8)

whereee = e + ~v�~v=2. In Eqs. (6)–(8), we solve for the density� , velocity~v, and speci�c internal energye. This sys-
tem requires closure equations to describe the Cauchy stress tensor� , the speci�c internal energye, and the heat �ux~q.
In this work the source terms are set to zero (i.e.,~b = ~0 andr = 0), we de�ne the stress tensor with the Newtonian �uid
constitutive equation, and assume a calorically perfect ideal gas with Fourier's law of heat conduction. Additionally,
the material parameters are set according to the values in Table 2.

The initial condition is made continuous by way of a Gaussianpro�le for the initial pressure, with an over-
pressure peak of 2 MPa and a standard deviation of 1=(10

p
2) m. The semidiscretized Eqs. (6)–(8) are integrated

using the embeddedO(� t4) andO(� t5) explicit Runge–Kutta method developed in Fehlberg (1970).The temporal
discretization,� t, is chosen adaptively to retainO(" ) accuracy. The boundary conditions are set to maintain the
initial conditions, and the simulation is stopped before the developing shock wave interacts with the computational
boundary. Figure 15 shows the numerical solutions to Eqs. (6)–(8) at timet = 133.902� s, generated with wavelet
parametersp = 8 and" = 10� 2.

For the numerical solution in Fig. 15, the MRWT discretization of the initial condition required only two resolu-
tion levels (i.e.,j max = 2), which resulted in 31.250 mm between the closest collocation points at timet = 0. As the
internal energy converted into kinetic energy, MRWT automatically re�ned the grid near regions of the developing
shock wave. As shown in Fig. 15(a), MRWT predicted nine resolution levels (i.e.,j max = 9) at timet = 133.902� s,
which resulted in 0.244 mm between the closest collocation points. A dense discretization at this length scale would
require over 67 million collocation points, whereas the MRWT solution in Fig. 15 only contains 312,793 collocation
points, resulting in a compression ratio greater than 200. Moreover, the sparse multiresolution spatial discretization
maintains symmetry and adapts to follow features as they evolve through the domain.

5.3 Conclusions

When computational science and engineering applications contain dynamic �ne-scale features, our proposed wavelet-
based algorithm offers a signi�cant improvement over traditional numerical methods. In particular, our approach is
well suited for models which require dynamically adaptive resolution across multiple spatial and temporal scales.
This is accomplished in our method by leveraging the properties of wavelet basis functions to automatically adapt
the computational domain as needed to accurately resolve features. This work highlights the state of wavelet-based

TABLE 2: Material parameters for dry air at room temperature

Variable Name Value


 Ratio of speci�c heats 7=5
� Dynamic viscosity 1.9� 10� 5 Pa s
� Thermal conductivity 2.55� 10� 2 W/(m K)
cv Constant volume speci�c heat 7.18� 102 J/(kg K)
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(a) (b)

FIG. 15: Sparse multiresolution grid and numerical solution att = 133.902� s obtained usingp = 8 and" = 10� 2. (a) MRWT
solution of the density �eld� . The grid points are colored according to their resolution levelj . (b) MRWT solution of the velocity
�eld k~vk2. The maximum velocity is approximately 568 m/s. The reader is referred to the online version of this article for clarity
regarding the color in this �gure. Results are taken from Harnish et al. (2021).

algorithms that evaluate spatial derivatives directly on the wavelet basis functions and ensures that the error is bounded
at each time step. Furthermore, we demonstrate that MRWT is capable of multiscale and multiphysics modeling using
compressed data on sparse multiresolution discretizations in �nite domains.

6. PARAMETRICALLY HOMOGENIZED CONSTITUTIVE MODELS FOR MUL TISCALE MODELING OF
DEFORMATION AND CRACK NUCLEATION IN TITANIUM ALLOYS (S.G. A ND S.K.)

Parametrically homogenized constitutive models (PHCMs) have been recently developed for multiscale modeling
of deformation and fatigue crack initiation in polycrystalline metallics alloys (Kotha et al., 2019a,b, 2020a,b; Oz-
turk et al., 2019a,b, 2021). PHCMs are thermodynamically consistent, macroscopic constitutive models that bridge
spatial scales through the explicit representation of microstructural descriptors in equations that constitute these mod-
els. Coef�cients in PHCM equations are explicit functions of representative aggregated microstructural parameters
(RAMPs), representing statistical distributions of morphological and crystallographic descriptors of the microstruc-
ture. Their distinct features offer them the following advantages:

� Explicit representation of microstructural descriptors,speci�cally RAMPs, in macroscopic constitutive rela-
tions is an attribute with important implications in structure-material design.

� Very high ef�ciency with good accuracy of multiscale solutions is a requirement for most data-driven design
algorithms.

The physics-based PHCM formulations for �nite deformationplasticity developed in Kotha et al. (2019a,b,
2020a,b) and Ozturk et al. (2019a,b, 2021) have a consistentthermodynamic framework for dissipative, irreversible
processes. Following the second law of thermodynamics, general forms of equations representing the evolution of
state variables in PHCMs area priori selected to re�ect the fundamental deformation characteristics of the mate-
rial including objectivity, rate dependence, anisotropy,tension-compression asymmetry, history/path dependence,
Bauschinger effect, etc. The PHCM equations are chosen to beconsistent with the aggregated response of mi-
cromechanical crystal plasticity �nite-element-model (CPFEM) simulations of microstructural statistically equivalent
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representative volume elements (M-SERVEs) (Bagri et al., 2018). The �rst law of thermodynamics, governing the
mathematical theory of homogenization through energy equivalence, bridges length scales and expresses constitutive
coef�cients as functions of RAMPs, e.g., in the form of texture tensor, grain size and orientation distribution, lattice
descriptors, etc.

This section focuses on the application of the PHCMs for modeling deformation and fatigue crack nucleation in
Ti alloys such as Ti64 and Ti6242. These materials are widelyused in aerospace applications such as in turbine engine
disks and aircraft panels. The microstructures of these alloys are characterized by a high degree of heterogeneity in
the form of grain structures with signi�cant anisotropy as well as tension-compression asymmetry. The mechanical
response and crack nucleation in these alloys have been found to be strongly in�uenced by local microstructure
(Ozturk et al., 2017). Phenomenological models, typicallyemployed for structural analysis, ignore microstructural
in�uence, while pure micromechanical analysis using the crystal plasticity �nite element (CPFE) method incurs huge
computational cost. To conduct structural simulations, accounting for the microstructure, the computationally ef�cient
PHCM and a parametrically homogenized crack nucleation model (PHCNM) (Kotha et al., 2019a,b, 2020b; Ozturk et
al., 2019a,b, 2021) are used. Multiscale validations have also been conducted for uniaxial and biaxial cruciform tensile
experiments in Maloth et al. (2020).

6.1 Developing the Parametrically Homogenized Constituti ve Model (PHCM)

The steps in the development of the PHCMs are delineated in Table 3. Module I represents the acquisition of mi-
crostructural and mechanical test data for calibration andvalidation of the CPFEM and PHCMs. In module II,
microstructure-based, statistically equivalent RVEs or M-SERVEs are �rst established. Following this, size-, rate-,
and temperature-dependent image-based CPFEM is used to perform detailed micromechanical simulations of the
M-SERVEs. Module III begins with the creation of a database of evolving variables from CPFEM simulations of
the M-SERVEs with various microstructural and loading combinations. The RAMPs of morphological and crys-
tallographic descriptors, such as grain size, shape, orientation, and misorientation distributions, are subsequently
identi�ed from detailed sensitivity analysis, e.g., Sobolanalysis. In module IV, functional forms of PHCM consti-
tutive coef�cients, e.g., elastic stiffness coef�cients,anisotropic yield function coef�cients, and hardening moduli,
are expressed as functions of RAMPs using machine-learningtools, operating on a database of constitutive coef-
�cients obtained from CPFEM simulations of the M-SERVEs. These constitutive parameters also incorporate state
variables representing the upscaled effect of microstructural deformation mechanisms. The PHCMs are readily incor-
porated in commercial FE software like ABAQUS through user-de�ned material modeling interfaces such as UMAT
for microstructure-sensitive structural response predictions. Finally, uncertainty quanti�cation is built into the PHCM
framework following a Bayesian inference formulation (Kotha et al., 2020a,b; Ozturk et al., 2021) to derive proba-
bilistic microstructure-dependent constitutive laws of the macroscopic response. A signi�cantly reduced number of
solution variables in the PHCM simulations, compared to direct numerical simulations (DNS) of micromechanical
models, make them several orders of magnitude more ef�cientwith good accuracy.

6.2 Parametrically Homogenized Crack Nucleation Model (PH CNM)

Grain-level crack nucleation in Ti alloys has been observedto occur at grain boundaries between a soft grain (favor-
ably oriented for plastic slip) and a hard grain (unfavorably oriented for plastic slip) (Anahid et al., 2011; Ozturk et al.,
2017) under certain load conditions. During the load hold period of a dwell fatigue problem, the soft grain undergoes
time-dependent plastic deformation, leading to dislocation pileups in the soft grain boundary and subsequent stress
concentration at the adjoining hard grain boundary that deforms elastically. From these physical observations, a grain-
level, probabilistic crack nucleation criterion has been proposed in Anahid et al. (2011) and Ozturk et al. (2017), with
the assumption that a wedge crack nucleates into the hard grain as a consequence of the closure failure of the Burgers
circuit surrounding piled-up dislocations in the neighboring soft grain. This model has been calibrated and validated
with crack nucleation experiments. The PHCNM corresponds to a macroscopic signature of fatigue crack nucleation
in grains of the underlying microstructure. Analogous to the process of developing PHCMs, the PHCNMs are gener-
ated from a database of the grain-scale probabilistic cracknucleation simulations. The probability of crack nucleation
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TABLE 3: Steps in the development of the PHCMs with uncertainty quanti�cation

Module I :
Experimental Data

Acquisition

Module II :
Image-Based

Micromechanical
Models

Module III :
Sensitivity for

Identifying RAMPs

Module IV :
PHCM

Calibration-Validation

Generate EBSD data
from experimental

microstructures

Generate
microstructure-based

SERVEs (M-SERVEs)

Generate virtual
microstructures from a

range of parameters

Generate training data
from CPFE analysis of
various SERVEs and
loading conditions

Conduct mechanical
tests for deformation
and crack nucleation

Calibrate crystal
plasticity and crack
nucleation model

Identify critical
micro-distributions and
corresponding RAMPs

Identify functional
forms of RAMPs in

PHCM coef�cients by
machine learning

Generate statistical
distributions of

descriptors in the
microstructure

Validate image-based
CPFE model with
experimental data

Establish RAMPs for
PHCM coef�cients
using Sobol analysis

Implement in
macroscopic FE codes
and validate structural

applications

Incorporate uncertainty
quanti�cation/
propagation

in PHCNMs is obtained at the macroscale as a function of macroscopic mechanical variables such as stresses, plastic
strain, and also the underlying RAMPs of the microstructure. The PHCNM has been validated against coupon-level
experiments under dwell loading conditions in Ozturk et al.(2019a,b).

6.3 Determining the Multiscale Response of Turbine Engine B lade Using PHCM and PHCNM

The effect of microstructure on mechanical response and crack nucleation probability of a prototype turbine engine
blade is studied using PHCM- and PHCNM-based structural simulations. The turbine engine disk is shown in Fig. 16.
An angular segment of the disk simulated in ABAQUS is shown inFig. 16(b). The �nite-element model of the blade
consists of 147,136 number of 10 noded tetrahedral elements. The two opposite faces of the hub are constrained
with roller supports to maintain axial symmetry. All the nodes in the model are subjected to centrifugal loading
corresponding to an angular velocity (! ) of 7200 rpm for a total of 170 h. This loading corresponds to approximately
5000 take-off operations, each lasting 2 minutes, and models the operating conditions of the disk (Ozturk et al.,
2021).

Two different simulations corresponding to extruded microstructures of the Ti alloy Ti64 are illustrated in
Figs. 17(a) and 17(b). These two microstructures have a similar average grain size of (� 19 � m), but their crystal-
lographic orientations differ as shown in their pole images. The RAMPs corresponding to these two microstructures
are calculated and assigned to all the elements in the model for PHCM simulations. Each ABAQUS simulation takes
approximately 2 CPU hours with 24 cores, with only a fractionof the total time actually spent in PHCM and PHCNM
simulations.

The mechanical response and crack nucleation probability along the rim of the blade [AB in Fig. 16(c)] are
studied to understand the in�uence of microstructure. The mechanical response variables, such as maximum tensile
principal stress (� (max;prin ) ) and the effective plastic strain (�� p), which are important for nucleating the crack, are
plotted in Fig. 18(a) at one of the critical locations C alongthe path AB. The material locally undergoes stress
relaxation while accumulating plastic strain. The microstructure MS2 accumulates more plastic strain as compared to
MS1, which may be attributed to the larger volume fraction ofgrains favorably oriented for plastic slip in MS2. The
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(a) (b) (c)

FIG. 16: Turbine engine disk: (a) prototype engine disk, (b) angularsegment of the disk blade simulated in ABAQUS, and (c) von
Mises stress contours at the end of the simulation using microstructure MS1

(a) (b)

FIG. 17: Extruded microstructure simulations. Inverse pole �gure maps and pole �gures of the electron back-scattered diffraction
(EBSD) images of two extruded microstructures. (a) MS1. (b)MS2 showing crystallographic orientations.

maximum crack nucleation probability (Pnucl ) in the model has been observed at point C in both simulations, and its
time history is plotted in Fig. 18(a). As a result of higher plastic strain accumulation and the underlying RAMPs, the
microstructure MS2 undergoes earlier crack nucleation (Pnucl = 0.95) as compared to MS1 under the same loading
conditions. This study illustrates how PHCM and PHCNM simulations give more insights into the microstructural
in�uence and thus may be used in subsequent material design.

These material microstructure-integrated constitutive models are invaluable for predicting the structural response
of Ti alloys, viz. Ti64. The PHCMs are superior to many of the homogenization-based multiscale models in terms of
ef�ciency and their application to real structural problems. The constitutive parameters in PHCMs have an explicit
dependency on the representative aggregated microstructural parameters or RAMPs, which provide a connection
between the structural response and microstructure. Incorporation of uncertainty quanti�cation in the UQ-PHCM
formulation using Bayesian inference has been pursued by Kotha et al. (2020a,b) and Ozturk et al. (2021) to quantify
the uncertainty in constitutive parameters, and a Taylor-expansion-based uncertainty-propagation method is used to
propagate the uncertainty to mechanical response variables.

7. MULTISCALE MODELING FOR DYNAMICS OF ARCHITECTED MATERIA LS AND STRUCTURES
(C.O.)

Architected materials constitute a unique class of materials that exhibit mechanical and functional properties that
are not observed in natural materials or traditional composites. This class of materials originates from building
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(a) (b)

FIG. 18: Time history of (a) maximum tensile principal stress, effective plastic strain, and (b) nucleation probability at a critical
point C in Fig. 16(c)

complex microstructures (lattices, shellular structures, continua) made of different discrete or continuous building
blocks and/or multiple materials. The advent of additive manufacturing is a major facilitator of architected materi-
als, where microstructures are either too costly or complexto construct using subtractive processes. These unique
properties do not only improve the performance of existing engineering applications but also bring to bear com-
pletely new engineering concepts that are otherwise not possible. Such novel applications include but are not limited
to elastic cloaking (Stenger, 2012), acoustic superlens (Kaina et al., 2015), topological insulators (Mousavi et al.,
2015), and waveguides (Khelif et al., 2004), among others. Atremendous number of architected material concepts
are being investigated for static (i.e., mechanical metamaterials) as well as dynamic conditions at a wide range of
frequencies (e.g., acoustic and optical metamaterials). Particularly in the context of wave propagation applications,
multiscale modeling and simulation of the dynamic responseof architected materials such as phononic crystals and
acoustic metamaterials presents many opportunities and signi�cant challenges due to the scale- and size-dependent
interactions between waves and the material microstructure. Because of this reason, there has been signi�cant recent
research activity in this domain. In this section we focus onsome of the recent developments in multiscale modeling
of phononic crystals and acoustic metamaterials for the purpose of controlling mechanical and acoustic waves.

Several new computational approaches have been recently proposed to describe the transient dynamic behavior
of architected materials and probe the topological and material property spaces in search of a better understanding of
the structure-dynamic property relationships. These approaches include but are not limited to computational homog-
enization (Liu and Reina, 2019; Roca et al., 2018; Sridhar etal., 2016), homogenization methods based on Willis'
theory (Meng and Guzina, 2018; Nassar et al., 2016; Sridhar et al., 2018), the multiscale �nite element method
(Casadei et al., 2016), and the method of computational continua (Filonova et al., 2016), among others. Some of
these methodologies operate at the scale separation limit,where the microstructure size is much smaller compared to
the deformation wavelength. These methodologies are particularly suited for locally resonant materials typically gen-
erated by relative deformation within the microstructure facilitated by large density mismatch between the material
constituents. Wave propagation in phononic crystals are affected by Bragg scattering at the short-wavelength regime.
When the deformation wavelength approaches the size of the microstructure, the assumption of scale separation is no
longer valid, and methodologies that do not rely on the scaleseparation assumption are needed to capture the transient
dynamic response patterns.

An alternative approach to modeling behavior when the lengths of the propagating waves are near (but longer
than) the characteristic size of the material microstructure is asymptotic homogenization with high-order expansions.
While the inclusion of �rst-order asymptotics result in theclassical homogenization models for the long-wavelength
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response, the inclusion of high-order asymptotics resultsin nonlocal macroscale governing equations. In this approach
the length-scale parameters associated with the high-order terms are typically directly obtained from the material
microstructure through homogenization operations. Earlypioneering work by Fish et al. (2002a,b) on asymptotic ho-
mogenization for transient dynamics focused on characterization of dispersion in composite materials. More recently,
this approach has been extended to predict the attenuation and dispersion of transient waves in architected materials
made of elastic and viscoelastic constituents (Hu and Oskay, 2017, 2019; Hui and Oskay, 2013, 2014, 2015). A critical
step toward achieving asymptotic homogenization models that can capture the dynamic response patterns including
attenuation and dispersion is the incorporation of appropriate spatiotemporal terms in the construction of the nonlocal
models.

Figure 19 illustrates the capabilities of high-order asymptotic homogenization modeling in capturing the complex
wave propagation behavior in a composite material (Hu and Oskay, 2018). The simulations compare the predictive
capability of a spatiotemporal nonlocal multiscale model and the direct numerical simulations performed using the
�nite-element method on the macroscopic domain by fully resolving the material heterogeneity. The macroscopic
domain is made of a square unit cell with two material constituents (i.e., matrix and elastic circular inclusion). Two
cases are considered where the matrix is taken to respond elastically and viscoelastically under the applied loading.
The loading is imparted on the domain such that the predominant propagating wave is in antiplane shear mode. The
�gure compares the propagating waves at two time instances as predicted by the direct numerical simulation and the
asymptotic homogenization method. In the case of a viscoelastic matrix, wave propagation at the imparted velocity
results in a strong interaction between material damping and dispersion induced by the heterogeneity that results in
achieving signi�cant wave attenuation. When the applied frequency is within the stop band of the material (not shown
in the �gure), the traveling shear wave completely attenuates in both elastic and viscoelastic cases, demonstrating the
ef�cacy of the approach even beyond the dispersion regime.

More recently, the variational multiscale enrichment (VME) approach has been proposed to model the transient
dynamic response of architected materials (Hu and Oskay, 2020). A key distinguishing factor between VME and the
aforementioned homogenization methods is that the former does not employ the principle of scale separation. This
allows the VME approach to be effective in modeling both Bragg scattering and local resonance excited at a broad
spectrum of frequencies, providing a uni�ed framework for architected materials. Compared to the high-order asymp-
totic methods, the structure as well as the formulation of VME is signi�cantly simpler, potentially offering wider ap-
plicability for problems that involve more complex phenomena and nonlinear material behavior. VME is based on the
additive decomposition of the displacement �eld into coarse and �ne-scale counterparts in the variational form and

FIG. 19: Wave propagation in viscoelastic and elastic composites aspredicted by direct numerical simulation and the asymptotic
homogenization models demonstrating the combined attenuating effects of Bragg scattering and viscous damping. The data asso-
ciated with these results are initially published in Hu and Oskay (2018).
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effective numerical evaluation of �ne- as well as the coarse-scale �elds. Numerical evaluation of the �ne-scale �elds
in VME is in contrast with the classical variational multiscale method (Hughes et al., 1998) that typically employs
analytical functions to approximate the �ne-scale response and is more similar to the numerical subgrid upscaling
approach (Arbogast, 2002). When modeling the transient dynamic response, short waves must be characterized accu-
rately on the coarse grid, where the element size could exceed the wavelength. In order to ensure accuracy, high-order
spectral elements are therefore utilized. The computational ef�ciency of the multiscale approach is achieved by con-
sidering reduced-order modeling (ROM) at the �ne scale. TheROM approach relies on a material-phase-based mode
synthesis (Craig and Bampton, 1968) and characteristic constraint mode reduction (Castanier et al., 2001).

Figure 20 shows the veri�cation of the spectral variationalmultiscale enrichment method in the context of an
elastic waveguide problem (Hu and Oskay, 2020). The simulations compare the predictive capability of the multiscale
model with the direct numerical simulations. The domain of the waveguide is a periodic arrangement of a phononic
crystal unit cell, with the exception of an elbow-shaped path made of homogeneous material. The macroscopic domain
is subjected to harmonic compression-tension loading. The�gure shows the lateral component of the velocity as
predicted by the multiscale and direct numerical simulations. The frequency of the imparted wave lies within the
stop band of the phononic crystal. The wave therefore is not expected to propagate through the phononic crystal but
is permitted to propagate unimpeded within the homogeneousregion of the domain. As the wave enters the vertical
part of the homogeneous path, the wave turns and propagates vertically, whereas the lateral propagation is once more
prohibited via Bragg scattering. A similar change of direction occurs at the second junction of the elbow. This process
was accurately modeled using both the direct numerical simulations as well as the multiscale approach. A key bene�t
of the multiscale methodology is that the computational cost is over one order of magnitude lower for the multiscale
approach. The elbow-shaped elastic waveguide was previously investigated experimentally using a periodic array of
steel cylinders in water (Khelif et al., 2004).

8. MULTISCALING FOR REINFORCED CONCRETE STRUCTURES (J.F. A ND A.M.)

With an annual production of more than 23 billion tons, concrete is the most used material in the construction industry
worldwide (Miller et al., 2018). Since the environmental impact of concrete is considerable due to CO2 emissions,
water consumption, and the landscape for aggregate mining,just to name a few, ef�cient design of reinforced concrete
structures is of the utmost importance to the society.

Since the early 1900s, there have been considerable research efforts aimed at developing theories and methods
to predict its behavior. The �rst code published in North America with speci�c recommendations for the analysis
and design of reinforced concrete was published in 1910 by the American Concrete Institute (ACI), which now pub-
lishes the Building Code Requirements for Structural Concrete with its latest edition published in the 2014 American
Concrete Institute Committee 318 (2014). Practitioners have long realized that stiffness and strength of concrete
structures must re�ect, among other things, cracking, plasticity, creep, and shrinkage; this has been done in the form

FIG. 20: Wave propagation in an elastic waveguide predicted by the spectral variational multiscale approach at a fraction of the
direct numerical simulation. The results are reprinted from Hu and Oskay (2020).
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of semiempirical reduction factors and recommendations that are still used in codes today. Research efforts aimed
at detailed numerical analysis of concrete structures spanmore than 40 years. Material models developed in recent
years employ a combination of damage mechanics and plasticity.

Prior to the year 2000, the literature on multiscale methodsfor reinforced concrete has been rather limited, but
interest in multiscale methods accelerated over the past two decades, as can be seen from Fig. 21. One of the ma-
jor hurdles in utilization of multiscale methods for large-scale concrete structures is their computational complexity.
This is because modeling each beam, column or slab with multiple continuum elements is computationally not feasi-
ble. Furthermore, resolving three-dimensional microstructural features of reinforced concrete for nonlinear problems
where a discretized RVE problem has to be repeatedly solved is not computationally feasible either. The primary
objective of this section is to describe an application of the most recent multiscale approaches developed for the
reinforced concrete structures. For the mathematical theory, we refer to the references included herein.

8.1 Higher Order Computational Continua (HC 2)

A higher-order computational continua (HC2) formulation developed for the analysis of reinforced concrete beams
(Moyeda and Fish, 2018a,b) and solid, waf�e, and hollowcorereinforced concrete slabs (Moyeda and Fish, 2019)
has been gaining traction among structural designers. The salient features of the (HC2) formulation are (i) the ability
to consider large RVEs characteristic to waf�e and hollowcore slabs, (ii) versatility stemming from the ease of han-
dling damage, prestressing, creep, and shrinkage, and (iii) computational ef�ciency resulting from model reduction,
combined with the well-established damage law rescaling method that yields simulation results nearly mesh-size
independent. The multiscale formulation has been validated against experimental data for solid, hollowcore, and
waf�e-reinforced concrete slabs, with and without prestressing.

The classical O(1) homogenization approach assumes constant coarse-scale strain over the RVE domain, which
holds true when the size of the RVE is small compared to the macroscopic element. For problems involving bending
of reinforced concrete elements, the macroscopic strain varies not only through the thickness, but may also vary
in between the stirrup, which comprises the three-dimensional domain of the RVE in the HC2 approach. Figure 22
schematically depicts the homogenization procedure basedon the variation of the macroscopic strain.

The HC2 formulation has been applied for the design of the reinforced concrete pier depicted in Fig. 23 that
supports the elevated railway for line 3 of the metro system in Monterrey, México. The displacement of a pier is of
critical importance, as it affects the comfort of the metro riders.

The pier cap is modeled as a simple supported beam with a span of 16.0 m; its cross section and RVE partitions
are shown in Fig. 24(a). The cap uses 32 longitudinal reinforcement bars 32 mm in diameter with yield stress of
420 MPa and four post-tension cables, each cable comprised of 16 prestressing strands 15 mm in diameter with an
ultimate strength of 1860 MPa. Reinforcements against shear failure are vertical stirrups 20 mm in diameter spaced

FIG. 21: Number of articles published with the phrase “Multiscale Concrete” in the text per Google Scholar
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FIG. 22: Elevation of the pier for the elevated railway in Monterrey,México. The loads represent the bearings of the superstructure
beam.

FIG. 23: Reduced-order methods for in�nitesimal (top) and arbitrary size (bottom) RVEs

at 150 mm in six vertical legs. The reinforcement mesh in the RVE is shown in Fig. 24(b). The concrete for the pier
has a compressive strength of 35 MPa and modulus of elasticity of 27,710 MPa.

The results of the nonlinear analysis are shown in Fig. 25, where the corresponding load versus displacement
is obtained and compared to the design requirements. From the analysis, it is clear that the pier cap is capable of
resisting acting loads on the structure. The displacement from the live load and impact is less than L/1600 and is
therefore adequate.

8.2 Sliced Statistical Reduced-Order Homogenization

A short-steel-�ber–reinforced ultrahigh-performance concrete known as Cor-Tuf is widely employed as a building
material due to its exceptional mechanical behavior. Cor-Tuf exhibits high compressive strength in addition to high
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(a) (b)

FIG. 24: Pier cap. (a) Finite-element mesh of the RVE and its partitions shown in colors. (b) Finite-element mesh of the reinforce-
ment, prestressing, and stirrups.

FIG. 25: Load versus displacement curve for the pier cap and its corresponding design loads

tensile strength stemming from the steel reinforcement (Pajak and Ponikiewski, 2013). The main challenge is in
predicting strength and postfailure behavior of the Cor-Tuf material under general loading conditions. As an illustra-
tion, consider a �ber-reinforced concrete (Trainor et al.,2013) scanned using an X-ray computed tomography (CT)
imaging system that permits characterization of its internal features. Based on the unsupervised separation and classi-
�cation of merged objects in three dimensions (Tal and Fish,2018), a database of location and alignment of all �bers
is depicted in Fig. 26(a). Figures 26(b)–26(d) depict groups of �bers closely aligned with a certain angle.

The sliced statistical reduced-order homogenization model (ROH) (Huang et al., 2019) for short-�ber–reinforced
composite consists of slices of short-�ber unit cells depicted in Fig. 27. The Voight approximation (Voigt, 1889) (or
so-called Taylor's kinematical assumption) is employed bywhich the �ne-scale strain in each slice is assumed to
coincide with that on the macroscale. The orientation of the�ber in each slice is de�ned to represent statistical distri-
bution of �bers. Numerical experiments suggest that the optimal number of slices is 7, which is a default parameter
in Altair Multiscale Designer (2021). Computational cost can be further reduced by use of so-called pseudo-nonlocal
macro-element that employs reduced integration for stressupdates but full integration for element matrices (Fish and
Yu, 2021).

The sliced statistical ROH model has been applied for analysis of the Malukou composite girder cable-stayed
bridge in Hunan Province of China, spanning nearly 1 km. The composite girder is composed of a 170-mm-thick
ultrahigh-performance �ber-reinforced concrete (UHPFRC) deck slab reinforced with 18- and 12-mm steel bars, in
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longitudinal and transverse directions, respectively, both spaced at 70-mm intervals. A comparative study by Wang et
al. (2020) has been performed for the four-point bending test problem shown in Fig. 28.

(a) (b) (c) (d)

FIG. 26: Distribution of location and alignment of short steel �bers: (a) all �bers, (b) � 2 [0; �= 12], (c) � 2 [�= 6; �= 4], and (d)
� 2 [�= 3; �= 12]

FIG. 27: Finite-element unit cell of a single discontinuous �ber slice

(a) (b)
FIG. 28: Four-point bending test: (a) model schematics (units: mm) and (b) comparison of single-scale, sliced statistical ROH
(multiscale) and experimental results
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8.3 Future Outlook

One of the most promising directions that may further propelthe �eld of multiscale science and engineering, as well
as accelerate adoption of multiscale technologies for reinforced concrete structures, appears to be the harnessing of
machine-learning and other arti�cial intelligence (AI) approaches for merging scales (Fish et al., 2021). The distilla-
tion of numerous �ne-scale simulations, each involving extremely large numbers of degrees of freedom, into models
describing overall behavior of large-scale reinforced concrete structures seems to be a natural task for such data-
driven methods. Often overlooked is the role that AI may havein the reverse process: the initialization of �ne-scale
con�gurations, consistent with a given coarse-scale state, that represent a realistic ensemble and whose simulation
can be used to determine the mean behavior. The development of computational methods that combine physical prin-
ciples (such as conservation of mass, momentum, and energy)with data-driven constitutive models is a burgeoning
topic in the �eld of computational science (Kirchdoerfer and Ortiz, 2016).

9. SUMMARY

From biology to engineering, multiscaling is necessary andsuccessful at bridging and connecting disparate spatial
and temporal scales to make possible concrete applications. We now have excellent tools for modeling the large
biological molecules of life, including genomes and viruses, and various materials in industry and the human body,
from bridges, airplanes, to human bones, and we can visualize and simulate motions in our oceans and galaxies. Such
applications are invaluable for medicine, technology, andindustry, and will only increase in importance. As computer
hardware advances, with contributions from cloud computing, quantum computing, and neuromorphic networks, our
software and modeling innovations will require new developments as well. With greater anticipated participation
of knowledge-based information, such as machine-learningtools, the �eld of modeling and simulation has a bright
future as never before.
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Gómez-Garc�́a, P.A., Portillo-Ledesma, S., Neguembor, M.V., Pesaresi, M., Oweis, W., Rohrlich, T., Wieser, S., Meshorer, E.,
Schlick, T., Cosma, M.P., and Lakadamyali, M., Mesoscale Modeling and Single-Nucleosome Tracking Reveal Remodeling of
Clutch Folding and Dynamics in Stem Cell Differentiation,Cell Rep., vol. 34, no. 2, p. 108614, 2021.

Grigoryev, S.A., Bascom, G., Buckwalter, J.M., Schubert, M.B., Woodcock, C.L., and Schlick, T., Hierarchical Loopingof Zigzag
Nucleosome Chains in Metaphase Chromosomes,Proc. Natl. Acad. Sci. USA, vol. 113, no. 5, pp. 1238–1243, 2016.

Gui, W. and Babu�ska, I., The h,p and h-p Versions of the Finite Element Method in 1 Dimension. Part I. The Error Analysis ofthe
p-Version,Numerische Mathematik, vol. 49, no. 6, pp. 577–612, 1986.
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