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Modeling and simulation have quickly become equivalent pillars of research along with traditional theory and experi-
mentation. The growing realization that most complex phenomena of interest span many orders of spatial and temporal
scales has led to an exponential rise in the development and application of multiscale modeling and simulation over
the past two decades. In this perspective, the associate editors of the International Journal for Multiscale Computa-
tional Engineering and their co-workers illustrate current applications in their respective fields spanning biomolecular
structure and dynamics, civil engineering and materials science, computational mechanics, aerospace and mechanical
engineering, and more. Such applications are highly tailored, exploit the latest and ever-evolving advances in both
computer hardware and software, and contribute significantly to science, technology, and medical challenges in the
21st century.
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1. INTRODUCTION

Our world is fundamentally multiscale. Relevant phenonsamn the gamut of atomic physics to evolutionary biology
and astrophysics. Multiscale models and simulations alisvto probe the various spatial and temporal features
of molecules, organs, materials, networks, populations|ear reactors, and much more with growing precision
and reliability. Both software (algorithms) and hardwapargllel and distributed computers, graphics processors,
cloud computing, etc.) have been instrumental in makingctimputational time advances needed to tackle real-life
complex problems (Schlick and Portillo-Ledesma, 2021)rddver, human ingenuity/intuition together with growing
data resources have allowed us to implement machine-fepanid artificial-intelligence techniques as part of these
multiscale model and simulation programs in many fields asmgefore. There is no doubt that the role of multiscale
modeling and simulation will only increase in the comingngedt warrants an academic discipline in its own right,
on par with basic sciences.

While aspects of multiscaling have existed for decades fse@xample, the biomolecular section below), the
exponential rise of the discipline has been notable onljhégast 20 years. Using the query search words “multi-
scale” and “multiscaling” in the SCOPUS database (withititie, key words, and abstract of the article), we obtain
a clear picture of this tremendous growth. Figure 1 showsahene of these multiscale papers (left) and the citation-
weighted volume of these papers (right) per year, indigadisharp rise since 2005, with slopes of marked increases
around 2004 and again in 2012. A dissection of these paptershia 20 disciplines and scientific journals with the
most papers in Fig. 2 shows engineering leading the wapvieltl by computer science, physics and astronomy, ma-
terials science, mathematics, earth and planetary sgieheeistry, environmental science, biochemistry/mdkacu
biology, chemical engineering, and medicine. The decoitipnshy journals where these multiscale papers reside
indicates top representatives Roceedings of SPIE (International Society of Optical Ewegiring) Lecture Notes
in Computational Science & Engineeringomputational Methods in Applied Mechanics & Engineerifaurnal of
Computational PhysicsaandMultiscale Modeling & SimulationThe next six journals that are close to one another
in paper volume includénternational Journal of Numerical Methods & EngineerjgP Conference Proceedings
Journal of Chemical Physic$EEE Transactions on Image Processji@@eophysics Research Letteasmd our own
International Journal for Multiscale Computational Engiering (IJMCE)

In this perspective article, the associate editorkINMCE and their co-workers illustrate the value of multiscal-
ing in their respective fields, from biology to mechanics amaterial design, providing a glimpse into important
applications today, and both the algorithms and computehtere that play a significant role in their success.
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FIG. 1: The volume of papers and citation-weighted papers from BORUS database with the query words “multiscale” or
“multiscaling” in article title, key words, and abstract
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FIG. 2: The 20 scientific disciplines and journals associated witistof the multiscale papers in Fig. 1

2. MULTISCALING IN BIOMOLECULAR MODELING AND SIMULATION (T.S AND S.P.-L.)
2.1 Biological, Temporal, and Spatial Scales

Several years ago, the Department of Energy held a workshdigd¢ussScientific Grand Challenges: Opportunities
in Biology at the Extreme Scale of Computi{8ghlick and Department of Energy, 2010). As a member of treep

discussing these important issues, T.S. recalls the exeitein the biological community as we discussed in 2009
how computer science and telecommunication disciplineg wdvancing to produce transformational technologies
with far-reaching impact on science, society, and humaltithéghere is no better time to realize these key influences
as we enter the middle of the second year of the COVID-19 paicthat has altered almost every aspect of our lives.
Indeed, the anticipated breakthroughs from the marriagheobiosciences and powerful cyberinfrastructures have
been realized by the enormous impact of predictive modgtimaglical technology, and vaccine developmentin warp
speed. Many of these developments were made possible biscaldt modeling, required to study the structures,

motions, and functions of large biophysical systems suctirasRNAs and viral proteins in their complex cellular
milieu [see Introduction in Schlick et al. (2021b) and vokipreface in Schlick et al. (2021d)].

As illustrated in Fig. 1 in the DOE report, reproduced herEig 3, biological system sizes span from thousands

of atoms in proteins, RNAs, and other macromolecules to tdercof 13° atoms in whole cells. The associated

relevant timescales of motion range from femtoseconds tmtes and longer. This necessitates appropriate reduc-
tion, approximation, and integration of modeling at diffet levels. Bridging these scales requires connectiors tha
telescope the findings from one level to the other, so thatimalate the functional dynamics associated with those

systems, investigate processes involving many biomascaind pursue the cellular implications of these processes
Algorithms such as enhanced sampling, data science t&elgdjectory management and visualization, and exascale

hardware facilities play crucial roles in these multiscpproaches.

The DOE report highlights how the functioning of biologiceinomachines that take part in the basic processes

of life can be divided into four categories of increasingtEdéemporal complexityprotein folding and RNA folding
biochemical binding and reaction mechanismach as enzyme catalysis and protein/ligand interactioasro-
molecular pathwaysincluding DNA replication and repair fidelity, protein ffesis, chromatin organization, and
RNA editing; andsupramolecular cellular processesuch as protein signaling networks, plant cell-wall fotior,

and endocytosis. Separable tools that “admit a varietynoé tispace, and trajectory sampling methods (and fully ex-

ploit the hundreds of millions of cores expected on an exasoachine) will enable long time integrations, implicit

solvation conditions, and mixed molecular mechanics arahtyum mechanics models” (Schlick and Department of

Energy, 2010).
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Towards Exascale Biological Simulations
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FIG. 3: Multiscale areas relevant to biology. Reproduced from B@92DOE report Schlick and Department of Energy (2010)

The most challenging aspect of modeling biomolecules isahéhese motions on different spatial and temporal
scales are intimately coupled. This makes many approadtesmiplicit integration methods in chemical kinetics
inadequate because the fast processes are not decayinathmert oscillatory. This has been the problem mainly
known as the timescale problem in molecular dynamics iatégr (Schlick, 2010).

Although some integration approaches for molecular dynarhave helped alleviate the severe timestep re-
guirement for biomolecular dynamics integration, the regdrovement has come from both hardware advances and
coarse-grained/multiscale models. In the latter, rathan treating individual atoms, groups of atoms are modeled.
This simplification facilitates the molecular represeiotabut also requires development of new force fields forghes
reduced-atom models. This multiscale approach was firsridesl in computational biology with simplified protein
models and hybrid molecular mechanics/quantum-mechiamicdels for chemical reactions that were recognized
in the 2013 Nobel Prize in Chemistry awarded to Martin KaspMichael Levitt, and Arieh Warshel [see Schlick
(2013), for an article on the significance of this award fompaitational biology]. Interestingly, machine-learning
approaches are now replacing the computationally expewggigntum-mechanics component.

2.2 Coarse-Grained Models

Many coarse-grained and multiscale models of biologicatesys are used today, including for proteins, RNAs,
DNAs, membranes, and other biomolecules, as describedimaeent perspectives—Schlick and Portillo-Ledesma
(2021) and Schlick et al. (2021a). While coarse-grained efsothvolve a simplified representation of the system,
multiscale models integrate different levels of the systdamexample of the former is a graph-theory representation
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to coarse grain RNAs as graphs, with important applicatiorthe frameshifting RNA element of the COVID-19
RNA (Schlick et al., 2021b,c). By representing RNAs as geapthe conformational space is vastly reduced from
sequence space to motif space. As motif space grows muchsioavly with RNA size than sequence space, graph
representations allow systematic exploration of motifsdfesign of novel RNA motifs and mutations. This feature
was exploited in recent computations of motif-altering imial mutations of the frameshifting element of the SARS-
CoV-2 viral genome to define targets for antiviral drugs angyediting (Schlick et al., 2021b,c). Two examples of
multiscale modeling are a model for the SARS-CoV-2 viriohjai includes the outer protein coat and its membrane
(Yu et al., 2021) and the multiscale chromatin model descritrelow.

2.3 Multiscale Chromatin Model

Genome organization is a fascinating area of biology/bysfas which necessitates development of models on many
scales to study and bridge experimental data obtained fnenctiromatin fiber to chromosomes. In the cell nucleus
of eukaryotic systems, one billion base pairs are comptasse a polymeric complex associated with chromosomal
DNA, which has many levels of organization and featuresweaare just beginning to understand (see Fig. 4). The
condensation required spans many orders of magnitude tefiérszlong DNA when stretched into a cell nucleus of
micron diameter. This enormous condensation is achievedigih formation of the chromatin fiber that makes up
chromosomes.

The DNA base pairs that define up genomes are wound aroungipures like yarn around many spools to
form thechromatin fiber At low salt, this nucleic acid/protein fiber is an open “bgamh-a-string” type polymer, but
at certain cell states it condenses greatly with the aid »iliaty and remodeling proteins to form highly condensed
and folded states (Kornberg, 1977). At the kilobase levekexondary structure of chromatin, zigzag topologies
are recognized, with self-associating fibers that havengtsecond-neighbor nucleosome connections (Grigoryev et
al., 2016). These arrangements are heterogeneous wittbiesizes, as expected from a floppy polymer in solution
(Ou et al., 2017). At the level of megabases of DNA base ptiese chromatin assemblies form loops and com-
partment domains that have unique functional roles aswatiaith specific genes (Lieberman-Aiden et al., 2009).
The chromatin fiber also displays various levels of condiémsavithin the cell nucleus, for example, relatively open
euchromatin and condensed heterochromatin (Eagen e0ab).Z-urthermore, individual chromosomes are known
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to occupy distinct territories in the cell nucleus (Speicaerd Carter, 2005). We are only beginning to understand
how these transitions from open to highly condensed statms @nd how they are regulated by the cellular machin-
ery (Maeshima et al., 2020; Rowley and Corces, 2018). Thifsraht open and condensed states and associated
transitions are key, because all transcript-directedgsses involving DNA require the DNA to be accessible to the
cellular machines and hence unraveled.

Over the past two decades, our group has developed an imglyasore detailed multiscale model of chromatin
to study genome properties at the fiber and gene levels (Bastal., 2018; Portillo-Ledesma and Schlick, 2020).
As new experimental data have become available, for examggarding histone tails or linker histone asymmetry,
these features have been incorporated into our model, shmolwg. 5.

The model combines different levels of coarse graining. DINA that connects the core nucleosome units
is coarse grained by beads, each of which represents abwibasepairs of double helical DNA. Coarse-grained
protein beads with a resolution of about five amino acids padhbare used to represent the flexible histone protein
tails and the linker-histone protein beads. These DNA antepr beads are then combined with an electrostatically
charged irregular surface approximation (Beard and Sch#601) for the nucleosome core based on the crystal
structure so that each of the approximately 300-point @saogn be used to collectively reproduce the electrostatic
properties of the atomistic nucleosome core particle. &hits are combined, with experimental anchoring for the
relative positioning so that each bead and core has an atsé&uler body-faced coordinate frame. These geometries
are used to compute the coordinates and energies of thersyBbte potential energy includes stretching, bending,
twisting, electrostatic, and exclusion-volume composemnhe conformational space of this complex system is then
sampled using equilibrium Monte Carlo, with local and gladfedation and translational moves. Recently, Brownian
dynamics sampling has been added as well, allowing path lgamipr small chromatin systems. A multiscaling
strategy was also used to incorporate the effects of epiiganarks (Collepardo-Guevara et al., 2015).

In Fig. 6 we illustrate some recent biological applicatiaisour chromatin model. These include formation
of nucleosome clutches, or groups of nucleosomes, durithgifferentiation (Gébmez-Garcia et al., 2021; Portillo
Ledesma et al., 2021); epigenetic effects of histone taitydation on fiber openings (Collepardo-Guevara et al.,
2015); domain segregation in fibers composed of alternatiedylated and wildtype tails (Rao et al., 2017); and the
effect of linker-histone reduction on tumorigenic progies of lymphoma cells (Yusufova et al., 2021).

The clutch study compares clutch patterns of uniform chtanfiders that vary in the levels of acetylation, linker
histone density, and the position of nucleosomes to thoBberk that mimic a gene related to mouse development. It
dissects the role of each chromatin parameter in clutchaggn, indicating that a delicate combination of theseéhr
parameters produces larger clutches upon differentiffign 6(a)] (Gomez-Garcia et al., 2021; Portillo-Ledeset
al., 2021).

|Canonica| Chromatin Mesoscale Model I

Linker
Histone

Linker DNA H2B

Nucleosome

FIG. 5: Mesoscale chromatin model. Coarse-grained beads for thelDKkers, flexible histone tails, and linker-histone urdtre
combined with a charged irregular surface model for theensdme core.
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FIG. 6: Recent mesoscale chromatin model applications. (a) THereliftiation state of the cell is correlated to clutch patie
as illustrated here for neural cells at increasing difféegion from top to bottom (Portillo-Ledesma et al., 202(b)) Chromatin
unfolds upon including acetylated tails in the chromatirsaseale model (Collepardo-Guevara et al., 2015). (c) Cationcom-
partmentalization is directed by the interactions betwsmme-type tails (Rao et al., 2017). (d) A loss of linker histproduces a
looser fiber that can be easily transcribed, up regulatingicegenes (Yusufova et al., 2021).

Notably, in the acetylation studies another level of maélig is utilized, where results of atomistic simulations
of dinucleosomes with acetylated tails are incorporateéd fhe mesoscale chromatin model using more rigid tail
conformations with altered force constants (Collepardmyara et al., 2015). Fibers with acetylated tails unfold du
to an impairment of the stabilizing internucleosome int&oas [Fig. 6(b)], highlighting the role of these epigdoet
modifications in regulating chromatin openings (Rao et24l1,7). When these rigid tails are used to construct fibers
with alternating acetylated and wildtype tails, segredaiecleosome camps result, producing a “checkerboard” nu-
cleosome contact matrix [Fig. 6(c)]. Thus, epigenetic rmdelad to chromatin segregation on this scale, connecting
local to global structure.

In the linker histone study, fibers modeled with differenkkr-histone densities explain the architectural chro-
matin changes that lead to lymphoma upon linker-histong lbswer linker-histone densities produce a transition
from a straight and rigid structure, with almost no longgarnteractions, to a loose and flexible fiber that can be
easily transcribed, increasing the expression of genéshioalld be silenced [Fig. 6(d)] (Yusufova et al., 2021).

Such combinations of coarse-graining and multiscalindg méked to be combined and developed in new ways
in the future to tackle problems on higher scales of genorgarozation and to understand chromatin loops on the
megabase level and chromosomal domains. At present, mamptespolymer models are being applied to study
chromosomal arrangements, but these cannot include kemnaitand external parameters of chromatin fibers, such
as linker-histone densities, irregularly nucleosome tposs, acetylation islands, and so on, which are crucial to
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interpret chromatin structure and function from first pijohes. Our challenge will be to develop ways to achieve
both inclusion of relevant local parameters and achievéwidarge-scale views. Connecting these many levels will
require innovative ways of multiscaling combined with adised simulation methodology.

3. ELECTRO-MECHANICAL MULTISCALE MODELING OF CANCELOUS BONE (M.B. AND K.H.)

Multiscale modeling is also important for simulating bonekich are subjected to mechanical, electrical, and mag-
netic effects. An important medical application of this rabid the use of sonography as a noninvasive diagnosis tool
for the early detection of osteoporosis (Kaufman et al. 808 bone disease that weakens the bone, increasing the
likelihood of fractures.

In recent decades, scientists with different backgrounte studied bone material developed different ap-
proaches to simulate bone behavior. Scientifically, borenisnteresting material with impressive properties. It is
strong and possesses a high stiffness and fracture toughmlede also maintaining a light weight (Hamed et al.,
2010). As a composite material, cancelous (spongy) bongistsrof small beams or shells of interconnected cortical
bone and interstitial bone marrow. Thus cancelous bone=psss a very complex and heterogeneous microstructure,
ideal for multiscale modeling.

We employ the finite element square method3{F®hich extends the standard finite element method (FEM) by
applying the multiscale concept and solving the differrgfuation systems on two scales via the FEM. See method
overview in Miehe et al. (1999) and Schroder and Hackl (20E8amples from the domains of biomechanics and
electromechanics are given in Chapelle et al. (2012) ankitutl et al. (2018). Applications of the FBwithin the
scope of bone modeling can be found in Biswas et al. (2019pe@Giet al. (2007), Pahr and Zysset (2008), and
llic et al. (2010). Instead of including microheterogeissitdirectly, which would require an extremely fine mesh
resolution, a second, smaller scale is introduced to sblegtoblem. Assuming the material is statistically regular
on the smaller scale, it can be modeled by a correspondinggeptative volume element (RVE). Here we denote
the larger scale as the macroscale and the smaller scale asictoscale. For the calculations, instead of using a
macroscopic material model, the state variables are as$iga microscale, where they are used to solve the RVE
problem. These microscale calculations then yield aveflagequantities and consistent tangent matrices for the
solution of the macroscale problem.

While past research often focused only on the mechanicalepties of bone, our model includes the complete
coupling of electrical and magnetic effects as well. Caitione is mainly composed of elastic collagen fibers acting
as charge carriers. When a shear stress is applied, thdagesoffibers slip past each other, thus producing the
piezoelectric effect (Fukada and Yasuda, 1957). This mewtsvhenever a mechanical strain is present in the bone,
an electric field is generated due to the piezoelectric effe¢cime-dependent fluctuation of the electric field then
creates a magnetic field due to Ampere’s circuital law, iogpmechanical, electrical, and magnetic effects togethe
For our modeling we assume a heterogenous material congsastiwo phases, cortical bone and bone marrow.

As stated above, an important application of bone modebnitpé early detection of osteoporosis. Compared
to a healthy bone, the volume fraction of cortical bone foregaherated bone can be reduced from 30% to 5%
(llic et al., 2010; Steeb, 2010). Figure 7 shows a comparipending on the osteoporosis stage and illustrates the
heterogeneity of the material. During the course of ostengis, the cortical bone (represented brighter) reduces an
is replaced by bone marrow (represented in dark). Thus wesmiploy different RVESs for the simulations. Here the
cortical bone phase is represented in gray, while the bomeomahase is drawn in transparent red color.

Early detection of osteoporosis can be done via sonogragirasonic waves enter the bone and due to the
described effects create a magnetic field, which can be megBiizelsu and Saha, 1981). Depending on the results,
conclusions on the health status of the investigated bombearawn.

We model bone as a heterogenous material consisting of twasesh cortical bone and bone marrow, see
Blaszczyk and Hackl (2021a,b). Cortical bone is modelediesoglectric, insulating solid bone marrow as vis-
coelastic, conducting solid. Electrical and magnetica#are coupled via the Maxwell equations. Based on energy
methods in mechanics, we establish a thermodynamicallgistmt material model and derive the weak and strong
form of the corresponding boundary-value problem. We shétdomainQ? := €y, representing the RVE of the
micro problem, into a cortical bone pa®, and a bone marrow paf?,,. For any quantity, the indices),, and
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FIG. 7: Bone phases depending on osteoporosis stage (cf. Latvesa8#rvier, 2019) and corresponding RVEs

(1), are used to denote the affiliation to each phase. If no indpreisent, the quantity or equation is valid for both
phases.

We employ a thermodynamic energy functional at the micieseghich contains the energy densitiég and
¥, of both phases, a volume constraihtdissipation and gauge functional& @nd¥,), and the potential of the
generalized external forcé¥.,;. The main variables of the problem are then the mechanisplatiements, the
electric scalar potentiap, and the magnetic vector potentiAl, yielding seven unknown variables for the three-
dimensional model. The state variables are the mechartieai s, the electric fieldE, and the magnetic flux density
B, which can be calculated from the main variables. Then twh@four Maxwell equations are already satisfied.

The energy densities for both phases consist of quadratigiers for mechanical, electrical, and magnetic effects,
resulting in a linear problem. We include a piezoelectriergy term for the cortical bone phase. For the bone marrow
phase, an inelastic straift and the viscosity parametg(* are introduced. The constraint function enforces volume
conservation of the inelastic deformation. The dissipafimction governs the evolution of the inelastic strain and
the energy loss due to conduction, which both occur onlyétibne marrow phase. The gauge function ensures that
a unique solution for the magnetic vector potenfials obtained by penalizing its divergence, effectively rieiqg
thatV - A vanishes and thus improving the numerical stability (Seoaest al., 2006). The penalty parameters
a numerical parameter used to control the gauge term. Fitiadl potential of generalized external forces contéiins
andt, the mechanical volume and surface foregsandgs, the electric volume and surface charges, agndndjs,
the volume and surface currents. By calculating the devivalf the energy density with respect to the state variables
we find the constitutive equations, from which we calcul&te material tensor€ (mechanical stiffness tenso#),
(permittivity tensor)u—! (inverse permeability tensow,(piezoelectric tensor), arkl(electric conductivity tensor).
We derive the flux quantities mechanical stresglectric displacemerd, magnetic field strengtHI, and the electric
current densityJ. For the cortical bone phase, the viscosity parameterand the electric conductivity tenser
vanish.

We use the stationary condition of the energy functionalaicudate the weak and strong form of the problem.
The weak form is later used to apply the FEM. For the strongnfave obtain the mechanical equilibrium condition,
the two remaining Maxwell equations, and boundary condgjoncluding the gauge. Additionally, we receive the
jump conditions between the phases on the interfdg,, and the evolution equation of the inelastic strain. The time
integration of the evolution equation is achieved by apmthe explicit Euler method.
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To connect the macro- and microscale in?FIE is important to discuss the transition between the scalbe
Hill-Mandel conditions (Hill, 1963) have to be fulfilled, gtanteeing energy conservation during the scale transitio
i.e., the virtual work on the macroscale has to be equal teithgal work on the microscale.

For the macro-to-micro transition, we fulfill these conalits by using periodic boundary conditions on the mi-
croscale, as they are the only type of boundary conditiorrevttee results on the microscale are independent from
the relative geometry of the RVE (Schroder and Hackl, 20Ad@ylitionally, as the RVE is periodic in space, this type
of boundary condition is the most suitable (llic et al., 2DIThe micro state variables consist then of two parts: a
term resulting from the microscopic main variables [deddig (-)], whose fluctuations are calculated, and a term
contributed by the macroscale:

e=¢i(y)+Ex), E=E(y)+Ex), and B=B(y)+B(x). (1)

This way we calculate the flux variables on the microscalett® micro-to-macro transition, the volume average of
these flux quantities is sent back to the macroscale:

ox) = = [ o)V, Dx) == [DE)V, D) == [ D)V,
o T

Dl

H(x) = é/H(y)dV, and J(x) = '/J(y)dV.
Q Q

Additionally, in this model energy dissipation is consigérin two ways. For the electric curredit the average

is calculated and included in the scale transition, rasylth no energy loss during the scale transition. For the
inelastic straine?, the complete state in every point and for every RVE is saVéds the dissipation occurs only
on the microscale and the energy conservation is fulfilledha virtual work send to the microscale is equal to the
virtual work send back added to the energy dissipation onrtoeoscale. With the flux variables available on the
macroscale, it is now possible to obtain the macro residuahie Newton—Raphson method and the calculation of
consistent macro tangent moduli remains, which are neaddtld iteration.

The calculation is performed by applying a small numeriaattyrbationA,; = 108 to each entry of the
corresponding state variable and then calculating eadly ehthe macroscopic tangent tensors by evaluating the
and the nonlinearity from the inelastic strain is very sirtaik calculation has to be done only once for all RVEs and
all time steps, making this approach very efficient. Togettith the calculated macro state variables, this allows the
macroscopic FE problem to be solved.

We use the same parameters for both scales. Here the tim@stement isA, = 1 x 10~2 s, the Newton—
Raphson tolerance tly = 1 x 108, and the gauge penalty parameteyis- 1.0 $A%/(kgm).

The default material parameters used are shown in Tableungf® modulus and Poisson’s ratio for both phases
can be found in Steeb (2010). All other parameters are ofteeratcademical nature and influence the results only

TABLE 1: Default material parameters

Material parameter Cortical bone Bone marrow
Young’s modulus E 22.0 GPa 2.0 GPa
Poisson’s ratio v 0.32 — 0.3 —
Permittivity & 8.85x 1012 F/m 8.85x 10712 F/m
Permeability e 1.257x 107 H/m 1.257x 1078 H/m
Piezoelectric coefficient ejs 3.0x 1073 As/m? 0 As/mt
Electric conductivity K1 0 S/m 1.0 x 10* S/m
Viscosity parameter Wy 0 s/GPa 5.0x A s/GPa
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marginally. We assume linear isotropic material everywhercluding the piezoelectric tensor, which is prefegdnti
in the z-axis due to the longitudinal orientation of the collagem®fi

We restrict ourselves to microscale simulations. For ost fixample, we use a degenerated bone RVE with
pp = 5.3%. We compare different mesh resolutions. The first RMisists of six elements for each spatial direction.
The second RVE consists of 12 elements for each spatialtitinetVe apply a macroscopic straip, = 1 x 10°.
Figure 8(a) shows the results of the simulations.

Both simulations show quadratic convergence behavior aniddic results. For both quantities, the results be-
tween the two different used meshes look nearly identicadfioming mesh independence of the results.

To compare periodic RVEs for different stages of osteopsrage created six different RVESs with the same total
volume of Vgyg = 1 mn?¥ andpy, € {5.3%, 10.4%, 14.5%, 19.1%, 24.2%, 29.5%he macroscopic mechanical
stiffness tenso€ := 95/Jt was now evaluated for all RVEs by applying a small numerieatyrbation. Then we
calculate the effective Young’s modulus as

 C4s(3C12+ 2Cua)
Ci2+ Caa '

eff (3)
Figure 8(b) shows a plot of the macroscopic Young’s modugsrest the volume fraction of cortical bone. Here we
observe a drastical reduction of the macroscopic Youngdutus with decreasing cortical bone fraction. Compared
to a healthy bonep{, = 29.5%), the effective Young’s modulus of the degeneratatele, = 5.3%) decreases to
57% (from 3.89 to 2.32 GPa). Similar results can be foundiénell al. (2010).

As a second example, we performed multiscale simulationa tvne-to-scale model of a human femur bone.
Here we applied a time-dependent mechanical displacenmignamplitudeu,,,. = 2 x 10~ to the middle section
of the bone and calculate 100 timesteps & 1 x 102 s), comparing the degenerated bone (RVipil = 5.3%)
to the healthy bone (RVE &, = 29.5%). Figures 9 and 10 show the results of the simulatidisquantities
drastically decrease for the degenerated bone. Compatkd tealthy bone, the average magnetic field strength for
the degenerated bone reduces to only about one-third.

Our fully coupled multiscale model of cancellous bone cdeed mechanical, electrical, and magnetic effects.
Both micro- and multiscale simulations yield good resultg.using the FE, we were able to perform multiscale
simulations of a true-to-scale human femur bone model, kvbém help to better understand experimentally observed
time effects on bone. For future research we aim to solvatrerse problem—recovery of the distribution of cortical
bone phase from magnetic field data—by using an artificialal@etwork to predict simulation outputs. Additionally,
wave propagation in cancellous bone will be investigated.

4. STABILIZED AND VARIATIONAL MULTISCALE METHODS FOR MULTIPHYSICS PROBLEMS
(A.M.)

Advances in computational resources have made numeritallations an indispensable tool across engineering
and sciences. Of great contemporary interest are probleshsite governed by multiple coupled partial differential
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FIG. 8: Microscale simulation results of a coarse and fine mesh et right resp.) (a) Lefto.., [GPa], right:D [As/m?].
Effective Young’s modulug’.s against cortical bone volume fractipn for different RVEs (b).
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FIG. 10: Simulation results of the femur bone model for the degerdréibp) and healthy RVE (bottornt) = 50. Left: H [A/m],
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equations (PDEs) on overlapping and/or on adjoining sutziiosn These problems are invariably multiscale be-
cause of the multiple coupled balance laws with their asgedimaterial, spatial and temporal scales. The drive for
developing high-fidelity computational methods for comxpieultiphysics problems has led to several successful ap-
proaches. Among the various successful efforts to devaelgip fidelity computational methods is the development
of the class of stabilized methods. The underlying philbsopf the stabilized methods is to strengthen the classi-
cal variational formulations so that discrete approximagi which would otherwise be unstable, become stable and
convergent. The origins of stabilized methods can be tréeett to the early 1980s, when Hughes and colleagues
realized the issue of lack of stability of the Galerkin mettior advection-dominated diffusion problems. To correct
this deficiency in the standard Galerkin approach, the siiiaa-upwind-Petrov—Galerkin (SUPG) method was pro-
posed (Brooks and Hughes, 1982). The SUPG method turned batthe forerunner of a new class of stabilization
schemes, namely, the Galerkin/least-squares (GLS) ig@tibin methods (Hughes and Franca, 1987). In the GLS
method a least-squares form of the residuals that is bas#itearorresponding Euler-Lagrange equations is added
to the Galerkin finite-element formulation. A general theof the stabilized methods was developed, and success
was achieved on a variety of problems. Concurrently, amatlass of stabilized methods that is based on the idea of
augmenting the Galerkin method with virtual bubble funesipcalled the residual-free bubbles (RFB) approach, was
introduced by Brezzi et al. (1997, 1998). In the mid-1990sghts revisited the origins of the stabilization schemes
from a variational multiscale viewpoint and presented thgational multiscale method (VMS) (Hughes, 1995).
In this method the different stabilization techniques cdouether as special cases of the underlying subgrid-scale
modeling concept.

The VMS method (Hughes, 1995; Hughes et al., 1998; Masud aack, 2008; Masud and Hughes, 2002;
Masud and Scovazzi, 2011), which is an offspring of the eadevelopments of stabilized methods, is based on an
underlying subgrid-scale modeling concept. The key id¢hen/MS framework is to perform a mathematical nesting
of the fine scales into the coarse scales, thereby providimoguast framework wherein all the important features of
the total solution are consistently represented in the edetpsolution. It is facilitated by aa priori direct sum
decomposition of the space of functions into coarse- andsitade space. This decoupling leads to a decomposition
of the physical and computational scales into two overlaggiomponents that are categorized as coarse scales and
fine scales, respectively.

Typically, the coarse scales are expanded via the traditiomte-element shape functions, while the fine scales
that lie in an infinite-dimensional space, are defined to lgerémaining part of the solution. The decoupling of
the spaces of functions leads to the decomposition of thelgmointo two subproblems, namely, the coarse-scale
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subproblem and the fine-scale subproblem. The modelingtisptee method lies in extracting the fine-scale solution
from the nonlinear fine-scale subproblem. This fine-scaletism is then variationally projected onto the coarse
scales (see Fig. 11). Although the final formulation doesdegpiend explicitly on the fine-scale fields, the effects of
fine scales are consistently represented via the addities@mlual-based terms.

There are two dominant approaches in the VMS methods: ({btken’s function approach (Bazilevs et al., 2007;
Codina et al., 2007; Franca et al., 2006; Hughes, 1995; Hughal., 1998), and (ii) the bubble-functions approach,
applied directly to the fine-scale variational equation $Mand Calderer, 2009; Masud and Franca, 2008; Masud
and Scovazzi, 2011). The Green’'s-function-based appneastapplied successfully to stabilize fluid-flow problems
and drive residual-based turbulence models (Bazilevs.2@)7; Codina et al., 2007; Colomés et al., 2015). The
latter approach, which is a generalization of the RFB meiBrdzzi et al., 1997, 1998), was developed by Masud
and co-workers to derive stabilized formulations for a @griof mixed field problems (Masud and Calderer, 2009,
2011, 2013; Masud and Khurram, 2004; Masud and Truster,;20a8ud et al., 2012). A unique feature of this class
of methods is that the solution of the fine-scale variati@talation does not requiiee priori assumptions on the
structure of the subgrid scale. Subsequently, the hieiackMS framework was proposed in Masud and Franca
(2008) and Masud and Scovazzi (2011), which resulted iratiarially derived closure models for incompressible
turbulent flows (Calderer and Masud, 2013; Masud and Cald20é 1; Masud and Zhu, 2021), as shown in Figs. 12
and 13.

The VMS framework when viewed from the perspective of sublgrscale physics provides a platform for varia-
tional coupling of multiple PDEs on concurrent and/or awijog subdomains. Embedding ideas from the discontinu-
ous Galerkin (DG) method in the bubble-enriched VMS framyiblasud and co-workers presented the variational
multiscale discontinuous Galerkin (VMDG) methods (Mastdlg 2012; Truster and Masud, 2014; Zhu and Masud,
2021) with rigorous treatment of the continuity conditidhat are critical to numerical and algorithmic stabilither
VMDG method facilitates variational embedding of the firrade interface models in a mathematically consistent
fashion, admits common element types, and is free of udaredktuning parameters (Calderer and Masud, 2013;
Chen et al., 2020; Masud and Truster, 2013; Truster and Ma&idt; Zhu and Masud, 2021). The enhanced sta-
bility of the VMDG framework enables the treatment of vasdnterface kinematics, such as honmatching mashes
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FIG. 11: Schematics of the VMS method
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FIG. 12: Turbulent flow around immersed sphere at Reynold’s numberR8,000
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in domain decomposition or substructure modeling, corgadtfriction in mechanical systems, and delamination at
bimaterial interfaces in composites (Fig. 14).

The complexity engendered by mixed field problems incretieeshallenge of validating the numerical solution
and quantifying uncertainty in these simulations. A siguifit attribute of the VMS and VMDG methods is that they
come equipped with built-in error estimation module (Haakd Garcia-Olivares, 2001; Hughes et al., 1998; Masud
and Truster, 2013; Masud et al., 2012), which can help witHigation and validation of the models and the method.
The fundamental mathematical constructs in these worksdend the traditional fluid and solid/structural mechsnic
subdisciplines and therefore yield numerical methods weithanced stability properties for application to coupled
field problems in engineering and sciences.

5. A MULTIRESOLUTION WAVELET METHOD FOR MULTISCALE AND MULTIPHYSICS
APPLICATIONS (C.H., L.D., K.M., AND D.L.)

Many useful computational science and engineering agfaita must solve PDEs with spatial and temporal scales
across many orders of magnitude. For example, models abasbienpacts (Boslough et al., 2015), supernova rem-
nants (Malone et al., 2014), detonation combustion (Cdli €2@16), the global ocean (Ringler et al., 2013), and the
mechanics of materials (Matous et al., 2017) are inherentiltiphysics and multiscale. Various innovative numeri-
cal methods have been developed to address this compuaidatitadlenge. For example, multigrid methods (Brandt,
1977; Yushu and Matous, 2020), Chimera overset grids (Bebal., 1989), remeshing/refining finite-element meth-
ods (FEM) (Gui and Babuska, 1986; Rajagopal and Sivakud8@7), and adaptive mesh refinement (AMR) (Berger
and Oliger, 1984; Fatkullin and Hesthaven, 2001) have aeli@ great deal in contemporary computational mod-
eling. However in many of these algorithms it is desirablé&riow a priori where the spatial and temporal refine-
ment will be required; otherwise they become computatigredpensive. In this work we advocate a wavelet-based
method, which is well suited for problems with dynamicaltiagting spatial and temporal scales.
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FIG. 14: Interfacial kinematic models, progressive interfacidlie, and the VMDG method
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Wavelet-based numerical methods are particularly coevgfior multiscale and multiphysics modeling because
the multiresolution basis functions naturally providegtilaty (Jawerth and Sweldens, 1994; Schneider and Vasilye
2010). To date, wavelet algorithms have been used in stictgstem modeling (Kong et al., 2016), multiscale
model reduction (van Tuijl et al., 2019), solutions to cagusystems of nonlinear PDEs (Dubos and Kevlahan, 2013;
Nejadmalayeri et al., 2015; Paolucci et al., 2014; Sakurali £2017), bounded energy conservation (Qian and Weiss,
1993; Ueno et al., 2003), and significant data compressiert¢Rizza, 1996; Beylkin and Keiser, 1997; Liandrat and
Tchamitchian, 1990). However, some implementations hadevarious restrictions, such as only solving PDEs with
periodic or infinite domains (e.g., Frohlich and Schneid€94; Goedecker, 1998; Igbal and Jeoti, 2014), using
computationally expensive dense grids (e.g., Le and Cgha¢c®@015; Lin and Zhou, 2001; Qian and Weiss, 1993),
or requiring the use of finite difference operators for sdaterivatives, inhibiting the ability to solve PDEs in the
wavelet domain and control accuracy of numerical difféeditn (e.g., Holmstrom, 1999; Nejadmalayeri et al., 2015
Paolucci et al., 2014).

Therefore, we have developed an algorithm designed to daheidimitations of past wavelet methods while
retaining their merits. Mathematical details regardingyetat theory and the application of wavelets to the solution
of PDEs can be found in Harnish et al. (2018, 2021). Here weritessa brief overview of our numerical method and
demonstrate its capabilities on a multiscale and multisysxample from Harnish et al. (2021).

5.1 Wavelet Theory and Numerical Implementation

Our algorithm is designed to solve initial boundary-valugtpems with error control on finite domains using a sparse
multiresolution spatial discretization. In each appii@atthe initial conditions are projected onto the waveletiba
cp%(f) ande”E(f), wheree® indicates a vector. For example, the wavelet representafi@ continuous function

f(@) in N spatial dimensions is given by

jmax 2N_1
EGESIELTOED DD DD DR A ?
z j=1 A=1 {;;:pdi;\zs}

In Eq. (4), wavelet coefficients#. with magnitudes below a threshaddire discarded along with their corresponding
collocation points. Forward and backward wavelet openatiare performed in our implementation using sparse,
banded matrix operators. Additionally, tlegh-order spatial derivatives in thedirection are applied directly to
the continuous wavelet basis functions through the use oétaixroperatorD(**), This process creates a sparse
multiresolution spatial discretization where the spatiabrs for fields and their derivatives are given by

1F@ = £ @)l < O(e) and [ foe(@) — Dl f @) < 0 (), 5)

wherep is an even integer that defines the order of the basis furectidarivations of the error estimates and details
regarding the construction of the matrix operators can badan Harnish et al. (2018).

After projecting fields and their derivatives onto the watdlasis, the PDEs are transformed into ordinary differ-
ential equations (ODESs) in time. Next, an explicit, embetjdRunge—Kutta time integration scheme (Fehlberg, 1970)
is used to convert the ODEs into algebraic equations. Thisgature updates the solutions from the time stép a
trial time stepn + 1*. Moreover, this update provides an estimate of the temporat and adjusts the time-step size
At such that the temporal error is of the same order as the bpata [i.e.,O(e)]. A predictor-corrector strategy is
used to iteratively insert new collocation points into tiparse discretization during temporal integration to easur
that the spatial accuracy remains bounded at each time\sftegn the trial time step is accepted as the true time step,
some wavelet coefficients are no longer needed to satisBrtbebounds and their collocation points are pruned from
the sparse computational grid as it evolves with the salstiof the PDEs. This algorithm has been implemented in
the Multiresolution Wavelet Toolkit (MRWT) written usingadern C++ and is multithreaded using OpenMP. The
data structures are designed to leverage temporal andldpatlity, and are trivially vectorizable for right-hassite
computations. The core matrix operators for wavelet tramns$ and spatial derivatives are stored mostly matrix;free
with stencil contractions that are trivially parallelizatand scale well.
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5.2 Numerical Examples

Various examples verifying the implementation of the aipon described in Section 5.1 have been published in
Harnish et al. (2018, 2021). Here we demonstrate the malésand multiphysics capabilities utilizing the Taylor-
Sedov blast-wave setup, where the energy pulse is depasitecbmpressible fluid, leading to the development of a
spherical shock wave. This example requires solving theledsystem of nonlinear PDESs given by the conservation
of mass, momentum, and energy:

dp _ .
5 = V- (p7), (6)
0 . . o -
7 (P0) ==V - (pU® T~ o)+ pb, @)
0 — -
5;(P€) = =V - (pel — 0T +q) + pb- T+ pr, (8)

wheree = e + ¥- /2. In Egs. (6)—(8), we solve for the densijtyvelocity 7, and specific internal energy This sys-
tem requires closure equations to describe the Cauchyg $énresoio, the specific internal energyand the heat flux.
In this work the source terms are set to zero (Ee;, 0andr = 0), we define the stress tensor with the Newtonian fluid
constitutive equation, and assume a calorically perfesligas with Fourier’s law of heat conduction. Additionally
the material parameters are set according to the valuedie Za

The initial condition is made continuous by way of a Gausgedafile for the initial pressure, with an over-
pressure peak of 2 MPa and a standard deviation/6f(/2) m. The semidiscretized Egs. (6)—(8) are integrated
using the embedde@(At*) andO(At°) explicit Runge—Kutta method developed in Fehlberg (197B temporal
discretization,At, is chosen adaptively to retaifi(¢) accuracy. The boundary conditions are set to maintain the
initial conditions, and the simulation is stopped before developing shock wave interacts with the computational
boundary. Figure 15 shows the numerical solutions to EQs(8p at timet = 133.902us, generated with wavelet
parameterg = 8 ande = 102

For the numerical solution in Fig. 15, the MRWT discretipatdf the initial condition required only two resolu-
tion levels (i.e.jmax = 2), Which resulted in 31.250 mm between the closest colimeatoints at time = 0. As the
internal energy converted into kinetic energy, MRWT auttioadly refined the grid near regions of the developing
shock wave. As shown in Fig. 15(a), MRWT predicted nine nasoh levels (i.e.jm. = 9) at timet = 133.902us,
which resulted in 0.244 mm between the closest collocat@ntp. A dense discretization at this length scale would
require over 67 million collocation points, whereas the MR¥blution in Fig. 15 only contains 312,793 collocation
points, resulting in a compression ratio greater than 20fredver, the sparse multiresolution spatial discretirati
maintains symmetry and adapts to follow features as thelyetbrough the domain.

5.3 Conclusions

When computational science and engineering applicationg&i dynamic fine-scale features, our proposed wavelet-
based algorithm offers a significant improvement over tiadal numerical methods. In particular, our approach is
well suited for models which require dynamically adaptiesalution across multiple spatial and temporal scales.
This is accomplished in our method by leveraging the progeif wavelet basis functions to automatically adapt
the computational domain as needed to accurately resadverés. This work highlights the state of wavelet-based

TABLE 2: Material parameters for dry air at room temperature

Variable Name Value
Y Ratio of specific heats /B
v Dynamic viscosity 1.9< 10 Pas
K Thermal conductivity 2.55 102 W/(mK)

Cy Constant volume specific heat ~ 7.%8107 J/(kg K)
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FIG. 15: Sparse multiresolution grid and numerical solution at 133.902us obtained using = 8 ande = 1072, (a) MRWT
solution of the density fielgd. The grid points are colored according to their resolutewel ;. (b) MRWT solution of the velocity
field ||7||2. The maximum velocity is approximately 568 m/s. The readeeferred to the online version of this article for clarity
regarding the color in this figure. Results are taken frormigdret al. (2021).

algorithms that evaluate spatial derivatives directlyl@wavelet basis functions and ensures that the error isdeaun
at each time step. Furthermore, we demonstrate that MRWapialie of multiscale and multiphysics modeling using
compressed data on sparse multiresolution discretizatiofinite domains.

6. PARAMETRICALLY HOMOGENIZED CONSTITUTIVE MODELS FOR MULTISCALE MODELING OF
DEFORMATION AND CRACK NUCLEATION IN TITANIUM ALLOYS (S.G. AND S.K.)

Parametrically homogenized constitutive models (PHCMs)ehbeen recently developed for multiscale modeling
of deformation and fatigue crack initiation in polycrydita¢ metallics alloys (Kotha et al., 2019a,b, 2020a,b; Oz-
turk et al., 2019a,b, 2021). PHCMs are thermodynamicallysitent, macroscopic constitutive models that bridge
spatial scales through the explicit representation of osicuctural descriptors in equations that constituteetinesd-

els. Coefficients in PHCM equations are explicit functiohsepresentative aggregated microstructural parameters
(RAMPs), representing statistical distributions of masfgigical and crystallographic descriptors of the micrestr
ture. Their distinct features offer them the following adtzges:

e Explicit representation of microstructural descripta@gecifically RAMPS, in macroscopic constitutive rela-
tions is an attribute with important implications in struiet-material design.

¢ Very high efficiency with good accuracy of multiscale sata is a requirement for most data-driven design
algorithms.

The physics-based PHCM formulations for finite deformaipdasticity developed in Kotha et al. (2019a,b,
2020a,b) and Ozturk et al. (2019a,b, 2021) have a consigterthodynamic framework for dissipative, irreversible
processes. Following the second law of thermodynamicsrgéfiorms of equations representing the evolution of
state variables in PHCMs aeepriori selected to reflect the fundamental deformation charatiesiof the mate-
rial including objectivity, rate dependence, anisotrojgysion-compression asymmetry, history/path dependence
Bauschinger effect, etc. The PHCM equations are chosen twobsistent with the aggregated response of mi-
cromechanical crystal plasticity finite-element-moddPEEM) simulations of microstructural statistically ecalent
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representative volume elements (M-SERVES) (Bagri et 8l182. The first law of thermodynamics, governing the
mathematical theory of homogenization through energnedgice, bridges length scales and expresses constitutive
coefficients as functions of RAMPs, e.g., in the form of tegttensor, grain size and orientation distribution, lattic
descriptors, etc.

This section focuses on the application of the PHCMs for ringeleformation and fatigue crack nucleation in
Ti alloys such as Ti64 and Ti6242. These materials are widedyl in aerospace applications such as in turbine engine
disks and aircraft panels. The microstructures of thesyslhre characterized by a high degree of heterogeneity in
the form of grain structures with significant anisotropy adl&s tension-compression asymmetry. The mechanical
response and crack nucleation in these alloys have beenl foube strongly influenced by local microstructure
(Ozturk et al., 2017). Phenomenological models, typicattyployed for structural analysis, ignore microstructural
influence, while pure micromechanical analysis using tletat plasticity finite element (CPFE) method incurs huge
computational cost. To conduct structural simulationspaating for the microstructure, the computationally édfit
PHCM and a parametrically homogenized crack nucleationaif®HCNM) (Kotha et al., 2019a,b, 2020b; Ozturk et
al., 2019a,b, 2021) are used. Multiscale validations higeteen conducted for uniaxial and biaxial cruciform tensi
experiments in Maloth et al. (2020).

6.1 Developing the Parametrically Homogenized Constitutive Model (PHCM)

The steps in the development of the PHCMs are delineatedtite Ba Module | represents the acquisition of mi-
crostructural and mechanical test data for calibration aaldiation of the CPFEM and PHCMs. In module I,
microstructure-based, statistically equivalent RVEs 66MRVES are first established. Following this, size-, rate-
and temperature-dependent image-based CPFEM is usedftonpatetailed micromechanical simulations of the
M-SERVEs. Module Il begins with the creation of a databasewwlving variables from CPFEM simulations of
the M-SERVESs with various microstructural and loading cambons. The RAMPs of morphological and crys-
tallographic descriptors, such as grain size, shape, tatien, and misorientation distributions, are subsedyent
identified from detailed sensitivity analysis, e.g., Soaodlysis. In module IV, functional forms of PHCM consti-
tutive coefficients, e.g., elastic stiffness coefficiematsisotropic yield function coefficients, and hardening olgd

are expressed as functions of RAMPs using machine-leatoinlg, operating on a database of constitutive coef-
ficients obtained from CPFEM simulations of the M-SERVEse3é constitutive parameters also incorporate state
variables representing the upscaled effect of microsirattieformation mechanisms. The PHCMs are readily incor-
porated in commercial FE software like ABAQUS through udefined material modeling interfaces such as UMAT
for microstructure-sensitive structural response piegtis. Finally, uncertainty quantification is built intostfPHCM
framework following a Bayesian inference formulation (Katet al., 2020a,b; Ozturk et al., 2021) to derive proba-
bilistic microstructure-dependent constitutive lawsté tnacroscopic response. A significantly reduced number of
solution variables in the PHCM simulations, compared teainumerical simulations (DNS) of micromechanical
models, make them several orders of magnitude more effisitimigood accuracy.

6.2 Parametrically Homogenized Crack Nucleation Model (PHCNM)

Grain-level crack nucleation in Ti alloys has been obsetgentcur at grain boundaries between a soft grain (favor-
ably oriented for plastic slip) and a hard grain (unfavoyaislented for plastic slip) (Anahid et al., 2011; Ozturk bf a
2017) under certain load conditions. During the load holdgakof a dwell fatigue problem, the soft grain undergoes
time-dependent plastic deformation, leading to dislazapileups in the soft grain boundary and subsequent stress
concentration at the adjoining hard grain boundary thatihes elastically. From these physical observations, agrai
level, probabilistic crack nucleation criterion has beesppsed in Anahid et al. (2011) and Ozturk et al. (2017), with
the assumption that a wedge crack nucleates into the hardagra consequence of the closure failure of the Burgers
circuit surrounding piled-up dislocations in the neighhgrsoft grain. This model has been calibrated and validated
with crack nucleation experiments. The PHCNM correspoadsrhacroscopic signature of fatigue crack nucleation
in grains of the underlying microstructure. Analogous t finocess of developing PHCMs, the PHCNMs are gener-
ated from a database of the grain-scale probabilistic anacleation simulations. The probability of crack nucleati
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TABLE 3: Steps in the development of the PHCMs with uncertainty dfieaition

Modulel: |7m§d;|§;;d Modulelll: ModulelV:
Experimental Data M icror%echanical Sensitivity for PHCM
Acquisition I dentifying RAM Ps Calibration-Validation
Models
. Generate training data
Generate EBSD data Generate Generate virtual )
. . : from CPFE analysis of
from experimental microstructure-based | microstructures from a .
. various SERVEs and
microstructures SERVEs (M-SERVES) range of parameters : o
loading conditions
Conduct mechanical Calibrate crystal Identify critical Identify functlonz_il
: o . T forms of RAMPs in
tests for deformation plasticity and crack micro-distributions and o
: . X PHCM coefficients by
and crack nucleation nucleation model corresponding RAMPs . .
machine learning
Genergte _statlst|cal Validate image-based| Establish RAMPs for Implem.ent n
distributions of . - macroscopic FE codes
X . CPFE model with PHCM coefficients .
descriptors in the . . . and validate structural
. experimental data using Sobol analysis o
microstructure applications
Incorporate uncertainty
quantification/
propagation

in PHCNM s is obtained at the macroscale as a function of nsaogic mechanical variables such as stresses, plastic
strain, and also the underlying RAMPs of the microstructlitee PHCNM has been validated against coupon-level
experiments under dwell loading conditions in Ozturk e{2019a,b).

6.3 Determining the Multiscale Response of Turbine Engine Blade Using PHCM and PHCNM

The effect of microstructure on mechanical response arzk eracleation probability of a prototype turbine engine
blade is studied using PHCM- and PHCNM-based structurallsitions. The turbine engine disk is shown in Fig. 16.
An angular segment of the disk simulated in ABAQUS is showRig 16(b). The finite-element model of the blade
consists of 147,136 number of 10 noded tetrahedral elem&h&stwo opposite faces of the hub are constrained
with roller supports to maintain axial symmetry. All the msdin the model are subjected to centrifugal loading
corresponding to an angular velocity) of 7200 rpm for a total of 170 h. This loading correspondgtpraximately
5000 take-off operations, each lasting 2 minutes, and rsdihel operating conditions of the disk (Ozturk et al.,
2021).

Two different simulations corresponding to extruded mstmactures of the Ti alloy Ti64 are illustrated in
Figs. 17(a) and 17(b). These two microstructures have dagimverage grain size of(19 um), but their crystal-
lographic orientations differ as shown in their pole imagdse RAMPSs corresponding to these two microstructures
are calculated and assigned to all the elements in the modeHCM simulations. Each ABAQUS simulation takes
approximately 2 CPU hours with 24 cores, with only a fractibthe total time actually spentin PHCM and PHCNM
simulations.

The mechanical response and crack nucleation probabibtygathe rim of the blade [AB in Fig. 16(c)] are
studied to understand the influence of microstructure. Thehanical response variables, such as maximum tensile
principal stressd(,,.. ,rin)) and the effective plastic strai(), which are important for nucleating the crack, are
plotted in Fig. 18(a) at one of the critical locations C alahg path AB. The material locally undergoes stress
relaxation while accumulating plastic strain. The microsture MS2 accumulates more plastic strain as compared to
MS1, which may be attributed to the larger volume fractiog@ins favorably oriented for plastic slip in MS2. The
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(a) (b) (©)
FIG. 16: Turbine engine disk: (a) prototype engine disk, (b) angségment of the disk blade simulated in ABAQUS, and (c) von
Mises stress contours at the end of the simulation usingostiercture MS1

[1010]

-

(@) (b)

FIG. 17: Extruded microstructure simulations. Inverse pole figuapsiand pole figures of the electron back-scattered diifiract
(EBSD) images of two extruded microstructures. (a) MS1MBR showing crystallographic orientations.

maximum crack nucleation probability’(..;) in the model has been observed at point C in both simulgtamds its
time history is plotted in Fig. 18(a). As a result of higheagtic strain accumulation and the underlying RAMPs, the
microstructure MS2 undergoes earlier crack nucleatidp{ = 0.95) as compared to MS1 under the same loading
conditions. This study illustrates how PHCM and PHCNM siatigins give more insights into the microstructural
influence and thus may be used in subsequent material design.

These material microstructure-integrated constitutieglets are invaluable for predicting the structural respons
of Ti alloys, viz. Ti64. The PHCMs are superior to many of tleerfogenization-based multiscale models in terms of
efficiency and their application to real structural probderfihe constitutive parameters in PHCMs have an explicit
dependency on the representative aggregated microstlgarameters or RAMPS, which provide a connection
between the structural response and microstructure. pcation of uncertainty quantification in the UQ-PHCM
formulation using Bayesian inference has been pursued byakat al. (2020a,b) and Ozturk et al. (2021) to quantify
the uncertainty in constitutive parameters, and a Taypaasion-based uncertainty-propagation method is used to
propagate the uncertainty to mechanical response vasiable

7. MULTISCALE MODELING FOR DYNAMICS OF ARCHITECTED MATERIALS AND STRUCTURES
(C.0)

Architected materials constitute a unique class of mdgetiat exhibit mechanical and functional properties that
are not observed in natural materials or traditional coriteesThis class of materials originates from building
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FIG. 18: Time history of (a) maximum tensile principal stress, dffexplastic strain, and (b) nucleation probability at aicail
point C in Fig. 16(c)

complex microstructures (lattices, shellular structumtinua) made of different discrete or continuous buaidi
blocks and/or multiple materials. The advent of additivenafacturing is a major facilitator of architected materi-
als, where microstructures are either too costly or comfiieconstruct using subtractive processes. These unique
properties do not only improve the performance of existingieeering applications but also bring to bear com-
pletely new engineering concepts that are otherwise ndaiilples Such novel applications include but are not limited
to elastic cloaking (Stenger, 2012), acoustic superler@n@et al., 2015), topological insulators (Mousavi et al.,
2015), and waveguides (Khelif et al., 2004), among othersefkendous number of architected material concepts
are being investigated for static (i.e., mechanical metari@ds) as well as dynamic conditions at a wide range of
frequencies (e.g., acoustic and optical metamateriasjidalarly in the context of wave propagation application
multiscale modeling and simulation of the dynamic respasachitected materials such as phononic crystals and
acoustic metamaterials presents many opportunities gmifisant challenges due to the scale- and size-dependent
interactions between waves and the material microstrecBecause of this reason, there has been significant recent
research activity in this domain. In this section we focusome of the recent developments in multiscale modeling
of phononic crystals and acoustic metamaterials for thpgme of controlling mechanical and acoustic waves.

Several new computational approaches have been receappsed to describe the transient dynamic behavior
of architected materials and probe the topological and riahfg&roperty spaces in search of a better understanding of
the structure-dynamic property relationships. These@gres include but are not limited to computational homog-
enization (Liu and Reina, 2019; Roca et al., 2018; Sridhal.eR016), homogenization methods based on Willis’
theory (Meng and Guzina, 2018; Nassar et al., 2016; Sridhat.2018), the multiscale finite element method
(Casadei et al., 2016), and the method of computationairasatFilonova et al., 2016), among others. Some of
these methodologies operate at the scale separationwirgte the microstructure size is much smaller compared to
the deformation wavelength. These methodologies arecpéatly suited for locally resonant materials typicallynge
erated by relative deformation within the microstructuaeilitated by large density mismatch between the material
constituents. Wave propagation in phononic crystals deet&@d by Bragg scattering at the short-wavelength regime.
When the deformation wavelength approaches the size of igresiructure, the assumption of scale separation is no
longer valid, and methodologies that do not rely on the segbaration assumption are needed to capture the transient
dynamic response patterns.

An alternative approach to modeling behavior when the lengf the propagating waves are near (but longer
than) the characteristic size of the material microstnecisiasymptotic homogenization with high-order expansion
While the inclusion of first-order asymptotics result in ttiassical homogenization models for the long-wavelength
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response, the inclusion of high-order asymptotics regutisnlocal macroscale governing equations. In this apgroa
the length-scale parameters associated with the high-tedms are typically directly obtained from the material
microstructure through homogenization operations. Baidpeering work by Fish et al. (2002a,b) on asymptotic ho-
mogenization for transient dynamics focused on charaetioin of dispersion in composite materials. More recently
this approach has been extended to predict the attenuatibdispersion of transient waves in architected materials
made of elastic and viscoelastic constituents (Hu and Q&Kdy’, 2019; Hui and Oskay, 2013, 2014, 2015). A critical
step toward achieving asymptotic homogenization modeisdan capture the dynamic response patterns including
attenuation and dispersion is the incorporation of appatgspatiotemporal terms in the construction of the naadloc
models.

Figure 19 illustrates the capabilities of high-order asyotip homogenization modeling in capturing the complex
wave propagation behavior in a composite material (Hu arlda@d<2018). The simulations compare the predictive
capability of a spatiotemporal nonlocal multiscale model ¢he direct numerical simulations performed using the
finite-element method on the macroscopic domain by fullplkgsg the material heterogeneity. The macroscopic
domain is made of a square unit cell with two material coustits (i.e., matrix and elastic circular inclusion). Two
cases are considered where the matrix is taken to respostecelly and viscoelastically under the applied loading.
The loading is imparted on the domain such that the predamhpr@pagating wave is in antiplane shear mode. The
figure compares the propagating waves at two time instarscpeedicted by the direct numerical simulation and the
asymptotic homogenization method. In the case of a visstielmatrix, wave propagation at the imparted velocity
results in a strong interaction between material dampirmdaspersion induced by the heterogeneity that results in
achieving significant wave attenuation. When the applieddency is within the stop band of the material (not shown
in the figure), the traveling shear wave completely attezsiat both elastic and viscoelastic cases, demonstrating th
efficacy of the approach even beyond the dispersion regime.

More recently, the variational multiscale enrichment (VMipproach has been proposed to model the transient
dynamic response of architected materials (Hu and Osk&@)2@ key distinguishing factor between VME and the
aforementioned homogenization methods is that the formes thot employ the principle of scale separation. This
allows the VME approach to be effective in modeling both Bragattering and local resonance excited at a broad
spectrum of frequencies, providing a unified framework fohi#tected materials. Compared to the high-order asymp-
totic methods, the structure as well as the formulation ofeVigl significantly simpler, potentially offering wider ap-
plicability for problems that involve more complex phenaraend nonlinear material behavior. VME is based on the
additive decomposition of the displacement field into ceansd fine-scale counterparts in the variational form and

Macroscopic domain Direct Numerical Simulation Asymptotic Homogenization Model
2
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172]
~
g
Prescribed Q
loading S
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172]
matrix <
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elastic
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FIG. 19: Wave propagation in viscoelastic and elastic compositgsexicted by direct numerical simulation and the asymptoti
homogenization models demonstrating the combined attierguetfects of Bragg scattering and viscous damping. Tha dgso-
ciated with these results are initially published in Hu arek&y (2018).
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effective numerical evaluation of fine- as well as the coacsde fields. Numerical evaluation of the fine-scale fields
in VME is in contrast with the classical variational mulédée method (Hughes et al., 1998) that typically employs
analytical functions to approximate the fine-scale resparsl is more similar to the numerical subgrid upscaling
approach (Arbogast, 2002). When modeling the transierdughjmiresponse, short waves must be characterized accu-
rately on the coarse grid, where the element size could exbeavavelength. In order to ensure accuracy, high-order
spectral elements are therefore utilized. The computatiefficiency of the multiscale approach is achieved by con-
sidering reduced-order modeling (ROM) at the fine scale.R@& approach relies on a material-phase-based mode
synthesis (Craig and Bampton, 1968) and characterististaint mode reduction (Castanier et al., 2001).

Figure 20 shows the verification of the spectral variatianaltiscale enrichment method in the context of an
elastic waveguide problem (Hu and Oskay, 2020). The sinomniatompare the predictive capability of the multiscale
model with the direct numerical simulations. The domainha& waveguide is a periodic arrangement of a phononic
crystal unit cell, with the exception of an elbow-shapedhpaade of homogeneous material. The macroscopic domain
is subjected to harmonic compression-tension loading. fijuge shows the lateral component of the velocity as
predicted by the multiscale and direct numerical simuregiol he frequency of the imparted wave lies within the
stop band of the phononic crystal. The wave therefore is xyp¢@ed to propagate through the phononic crystal but
is permitted to propagate unimpeded within the homogenezgien of the domain. As the wave enters the vertical
part of the homogeneous path, the wave turns and propagateslly, whereas the lateral propagation is once more
prohibited via Bragg scattering. A similar change of dil@ebccurs at the second junction of the elbow. This process
was accurately modeled using both the direct numericallsitions as well as the multiscale approach. A key benefit
of the multiscale methodology is that the computationat ever one order of magnitude lower for the multiscale
approach. The elbow-shaped elastic waveguide was préyiowestigated experimentally using a periodic array of
steel cylinders in water (Khelif et al., 2004).

8. MULTISCALING FOR REINFORCED CONCRETE STRUCTURES (J.F. AND A.M.)

With an annual production of more than 23 billion tons, ceteis the most used material in the construction industry
worldwide (Miller et al., 2018). Since the environmentalpiatt of concrete is considerable due to Gfnissions,
water consumption, and the landscape for aggregate minisigp name a few, efficient design of reinforced concrete
structures is of the utmost importance to the society.

Since the early 1900s, there have been considerable reseffods aimed at developing theories and methods
to predict its behavior. The first code published in North Aicee with specific recommendations for the analysis
and design of reinforced concrete was published in 1910 &Wtherican Concrete Institute (ACI), which now pub-
lishes the Building Code Requirements for Structural Cetecwith its latest edition published in the 2014 American
Concrete Institute Committee 318 (2014). Practitionengehiang realized that stiffness and strength of concrete
structures must reflect, among other things, crackingtipigs creep, and shrinkage; this has been done in the form

Direct Numerical
Simulation

Multiscale Model
C@ron00

t=0.1T

FIG. 20: Wave propagation in an elastic waveguide predicted by tketsgd variational multiscale approach at a fraction of the
direct numerical simulation. The results are reprintediftdu and Oskay (2020).
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of semiempirical reduction factors and recommendatioas dhe still used in codes today. Research efforts aimed
at detailed numerical analysis of concrete structures apane than 40 years. Material models developed in recent
years employ a combination of damage mechanics and ptgstici

Prior to the year 2000, the literature on multiscale metHfodseinforced concrete has been rather limited, but
interest in multiscale methods accelerated over the pastieades, as can be seen from Fig. 21. One of the ma-
jor hurdles in utilization of multiscale methods for largeale concrete structures is their computational comiglexi
This is because modeling each beam, column or slab with pheitbntinuum elements is computationally not feasi-
ble. Furthermore, resolving three-dimensional micradtral features of reinforced concrete for nonlinear peots
where a discretized RVE problem has to be repeatedly sob/@dticomputationally feasible either. The primary
objective of this section is to describe an application @& thost recent multiscale approaches developed for the
reinforced concrete structures. For the mathematicalyhe refer to the references included herein.

8.1 Higher Order Computational Continua (HC?)

A higher-order computational continua (BJformulation developed for the analysis of reinforced cete beams
(Moyeda and Fish, 2018a,b) and solid, waffle, and holloweceneforced concrete slabs (Moyeda and Fish, 2019)
has been gaining traction among structural designers. dlfensfeatures of the (H& formulation are (i) the ability

to consider large RVEs characteristic to waffle and hollaeadabs, (ii) versatility stemming from the ease of han-
dling damage, prestressing, creep, and shrinkage, ahddiiiputational efficiency resulting from model reduction,
combined with the well-established damage law rescalinthatkthat yields simulation results nearly mesh-size
independent. The multiscale formulation has been valitlagainst experimental data for solid, hollowcore, and
waffle-reinforced concrete slabs, with and without presstireg.

The classical O(1) homogenization approach assumes ooesiarse-scale strain over the RVE domain, which
holds true when the size of the RVE is small compared to theesaopic element. For problems involving bending
of reinforced concrete elements, the macroscopic straies/aot only through the thickness, but may also vary
in between the stirrup, which comprises the three-dimeragidomain of the RVE in the HCapproach. Figure 22
schematically depicts the homogenization procedure basdide variation of the macroscopic strain.

The HC formulation has been applied for the design of the reinfdroencrete pier depicted in Fig. 23 that
supports the elevated railway for line 3 of the metro systemlonterrey, México. The displacement of a pier is of
critical importance, as it affects the comfort of the metders.

The pier cap is modeled as a simple supported beam with a $d#n0om; its cross section and RVE patrtitions
are shown in Fig. 24(a). The cap uses 32 longitudinal redgiment bars 32 mm in diameter with yield stress of
420 MPa and four post-tension cables, each cable comprfskg mrestressing strands 15 mm in diameter with an
ultimate strength of 1860 MPa. Reinforcements againstrdaéare are vertical stirrups 20 mm in diameter spaced
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FIG. 21: Number of articles published with the phrase “Multiscalsn@ete” in the text per Google Scholar
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FIG. 22: Elevation of the pier for the elevated railway in Monterfégxico. The loads represent the bearings of the supetateic
beam.
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FIG. 23: Reduced-order methods for infinitesimal (top) and arbjtsire (bottom) RVESs

at 150 mm in six vertical legs. The reinforcement mesh in tH& & shown in Fig. 24(b). The concrete for the pier
has a compressive strength of 35 MPa and modulus of elgstick7,710 MPa.

The results of the nonlinear analysis are shown in Fig. 2%re/tthe corresponding load versus displacement
is obtained and compared to the design requirements. Frerarthlysis, it is clear that the pier cap is capable of
resisting acting loads on the structure. The displacenrent the live load and impact is less than L/1600 and is
therefore adequate.

8.2 Sliced Statistical Reduced-Order Homogenization

A short-steel-fiber—reinforced ultrahigh-performanceaete known as Cor-Tuf is widely employed as a building
material due to its exceptional mechanical behavior. Gdrekhibits high compressive strength in addition to high
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FIG. 24: Pier cap. (a) Finite-element mesh of the RVE and its panttighown in colors. (b) Finite-element mesh of the reinforce
ment, prestressing, and stirrups.
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FIG. 25: Load versus displacement curve for the pier cap and its sporeding design loads

tensile strength stemming from the steel reinforcemenaiPand Ponikiewski, 2013). The main challenge is in
predicting strength and postfailure behavior of the Cdiriaterial under general loading conditions. As an illustra
tion, consider a fiber-reinforced concrete (Trainor et2013) scanned using an X-ray computed tomography (CT)
imaging system that permits characterization of its iraef@atures. Based on the unsupervised separation and class
fication of merged objects in three dimensions (Tal and FA6l8), a database of location and alignment of all fibers
is depicted in Fig. 26(a). Figures 26(b)—26(d) depict gsoffibers closely aligned with a certain angle.

The sliced statistical reduced-order homogenization m@i@H) (Huang et al., 2019) for short-fiber—reinforced
composite consists of slices of short-fiber unit cells diggidn Fig. 27. The Voight approximation (Moigt, 1889) (or
so-called Taylor’s kinematical assumption) is employedahyich the fine-scale strain in each slice is assumed to
coincide with that on the macroscale. The orientation ofither in each slice is defined to represent statistical distri
bution of fibers. Numerical experiments suggest that them@dthumber of slices is 7, which is a default parameter
in Altair Multiscale Designer (2021). Computational coahde further reduced by use of so-called pseudo-nonlocal
macro-element that employs reduced integration for strpdates but full integration for element matrices (Fish and
Yu, 2021).

The sliced statistical ROH model has been applied for aisbfsthe Malukou composite girder cable-stayed
bridge in Hunan Province of China, spanning nearly 1 km. Téramosite girder is composed of a 170-mm-thick
ultrahigh-performance fiber-reinforced concrete (UHPIFRECk slab reinforced with 18- and 12-mm steel bars, in
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longitudinal and transverse directions, respectivelyhispaced at 70-mm intervals. A comparative study by Wang et
al. (2020) has been performed for the four-point bendingaexblem shown in Fig. 28.

(b)
FIG. 26: Distribution of location and alignment of short steel fibéeg all fibers, (b) € [0,7/12], (c)6 € /6,7 /4], and (d)
0 € [n/3,7/12

FIG. 27: Finite-element unit cell of a single discontinuous fibecsli
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FIG. 28: Four-point bending test: (a) model schematics (units: mna) @) comparison of single-scale, sliced statistical ROH
(multiscale) and experimental results
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8.3 Future Outlook

One of the most promising directions that may further pralpelffield of multiscale science and engineering, as well
as accelerate adoption of multiscale technologies fofasied concrete structures, appears to be the harnessing of
machine-learning and other artificial intelligence (Alpapaches for merging scales (Fish et al., 2021). The distill
tion of numerous fine-scale simulations, each involvingerely large numbers of degrees of freedom, into models
describing overall behavior of large-scale reinforcedarete structures seems to be a natural task for such data-
driven methods. Often overlooked is the role that Al may hiawhe reverse process: the initialization of fine-scale
configurations, consistent with a given coarse-scale,stad represent a realistic ensemble and whose simulation
can be used to determine the mean behavior. The developferhputational methods that combine physical prin-
ciples (such as conservation of mass, momentum, and engitljyjlata-driven constitutive models is a burgeoning
topic in the field of computational science (Kirchdoerfed@rtiz, 2016).

9. SUMMARY

From biology to engineering, multiscaling is necessary sunctessful at bridging and connecting disparate spatial
and temporal scales to make possible concrete applicaMiasnow have excellent tools for modeling the large
biological molecules of life, including genomes and visisgnd various materials in industry and the human body,
from bridges, airplanes, to human bones, and we can viguatid simulate motions in our oceans and galaxies. Such
applications are invaluable for medicine, technology, imddstry, and will only increase in importance. As computer
hardware advances, with contributions from cloud comgutiiuantum computing, and neuromorphic networks, our
software and modeling innovations will require new deveiepts as well. With greater anticipated participation
of knowledge-based information, such as machine-learwals, the field of modeling and simulation has a bright
future as never before.
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