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Abstract

We reassess progress in the field of biomolecular modeling and simulation,
following up on our perspective published in 2011. By reviewing metrics
for the field’s productivity and providing examples of success, we under-
score the productive phase of the field, whose short-term expectations were
overestimated and long-term effects underestimated. Such successes include
prediction of structures and mechanisms; generation of new insights into
biomolecular activity; and thriving collaborations betweenmodeling and ex-
perimentation, including experiments driven by modeling. We also discuss
the impact of field exercises and web games on the field’s progress. Overall,
we note tremendous success by the biomolecular modeling community in
utilization of computer power; improvement in force fields; and develop-
ment and application of new algorithms, notably machine learning and arti-
ficial intelligence. The combined advances are enhancing the accuracy and
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scope of modeling and simulation, establishing an exemplary discipline where experiment and
theory or simulations are full partners.
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Not all those who wander are lost.

—J.R.R. Tolkien, The Fellowship of the Ring

On the mountains of truth you can never climb in vain: either you will reach a point higher up today,
or you will be training your powers so that you will be able to climb higher tomorrow.

—Friedrich Nietzsche,Human, All Too Human

1. INTRODUCTION

1.1. Background

Several years ago, my students and I from New York University (NYU) published a perspec-
tive article on the field of biomolecular modeling and simulation (171). We sought to trace the
field’s trajectory from its early days to recent developments and applications.Our trajectory traced
emerging simulation techniques by Alder &Wainwright (3), by Rahman& Stillinger (154), and by
Stillinger & Rahman (188); consistent force field developments by the groups of Lifson (18, 106),
Scheraga (129, 164), and Allinger (4, 5); and pioneering applications using energyminimization for
structure determination, crystal structure refinement (71), enzyme reactions (199), and molecular
dynamics (MD) simulations (115).We were particularly interested in charting objective measures
of the field’s evolution, assessing the field’s fulfillment of its early high expectations, evaluating
interactions between modelers and experimentalists, describing notable examples of success and
failure, and pinpointing areas for future growth. Overall, we probed how the fundamental prob-
lems of force field imperfections and limited conformational sampling were being addressed, and
what the field’s prospects for the future were. Our final verdict of a “field coming of age” (171,
p. 191), despite early inflated expectations and unrealistic goals, was summarized in a field expec-
tation curve projecting steady progress onto 2020. This view is reproduced in Figure 1 with new
accompanying images.

1.2. Field Expectation Curve

Such an expectation curve was first described by computer scientist James Bezdek (17) for new
technologies. It begins with a technology trigger (in this case, the advent and rising availability
of supercomputers) and often displays an early peak where unrealistic, inflated short-term expec-
tations accompany the initial euphoria upon introduction of the new product. When obstacles
and disappointments emerge for the new technology—in this case, resulting from the inaccura-
cies of force fields and limited conformational sampling that became apparent at the end of the
20th century—most new technologies disappear. The field of biomolecular modeling and simula-
tion also suffered from disappointments realized in the pharmaceutical industry using drug design
initiatives (126) and in our ability to immediately utilize information from the Human Genome
Project for improved diagnosis and treatment of human diseases. Althoughmost newly introduced
technologies disappear, those that survive in the long term demonstrate steady progress, when
deficiencies are carefully addressed and notable advances are made, as illustrated in our revised
expectation curve of biomolecular modeling and simulation (Figure 1).

1.3. Progress

Much has happened in the field in the intervening years since our perspective (171). Most no-
tably, the 2013 Nobel Prize in Chemistry was awarded to Martin Karplus, Michael Levitt, and
Arieh Warshel for pioneering work in computational biology and chemistry, including multiscale
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Figure 1

Expectation curve for the field of biomolecular modeling and simulation. The field started with comprehensive molecular mechanics
efforts, and it took off with the increasing availability of fast workstations and, later, supercomputers. Following unrealistically high
short-term expectations and disappointments concerning the limited medical impact of modeling and genomic research on human
disease treatment, better collaborations between theory and experiment have ushered the field to its current productive stage. Problems
realized in the decade between 2000 and 2010 and later addressed include force field imperfections, conformational sampling
limitations, some pharmacogenomics hurdles, and limited medical impact of genomics-based therapeutics for human diseases.
Technological innovations that have helped drive the field include distributed computations and the advent of the use of graphic
processing units for biomolecular computations. The molecular-dynamics-specialized supercomputer Anton made it possible in 2009 to
reach the millisecond timescale for explicit-solvent all-atom simulations. The 2013 Nobel Prize in Chemistry awarded to Levitt,
Karplus, and Warshel helped validate a field that lagged behind experiment and propel its trajectory. Abbreviation: QM/MM, quantum
mechanics/molecular mechanics.

computations and MD applied to enzyme structure and mechanisms. This prize is significant be-
cause it has validated a field that historically lagged behind experimentation (168). Now, scientists
studying chemical and biological systems routinely employ computations using graphic processing
units and cloud-based computing, in combination with experiments, to probe structures, energet-
ics, kinetics, mechanisms, and functions of these systems.With visionary leaders and open source
programs, like NAMD and GROMACS,modern bioinformatics and computational biology tools
have opened our eyes to biomolecules in action, much like the light microscope did for biology
in the 17th century. Simulations of millions (44) or billions (83) of atoms are now possible, and
millisecond time frames are easily approachable, especially when using enhanced sampling meth-
ods and coarse-grained or multiscale models. Biomolecular modeling and simulation applications
have allowed us to pose and answer new questions and pursue difficult challenges in both basic
and applied research. Problems range from unraveling the folding pathways of proteins and iden-
tification of new therapeutic targets for common human diseases to design of novel materials and
pharmaceuticals.
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A spectacular demonstration of the ability of molecular modelers to exploit state-of-the-art
software and collaborate productively emerged recently,with the rise of the COVID-19 pandemic.
Rapidly, the fastest supercomputers were recruited to simulate viral proteins and explore potential
binding of drugs to them by in silico screening of large databases. Consortia like the COVID-19
HPC and BioExcel were established to bring together government, industry, and academic leaders
to support COVID-19 research by providing modelers worldwide access to the fastest supercom-
puters. Public science projects like Foldit, Eterna, and others also recruited the community to
address specific subprojects related to SARS-CoV-2.

1.4. Update

In this updated perspective, we follow up on some of these objective measures of the field’s tra-
jectory, report on exciting recent examples of success and instructive failures, pinpoint emerging
challenges and subfields, and discuss the role of community exercises on the field. Some of our
discussions are based on community responses to the questionnaire developed in our NYU course
on Biomolecular Modeling (see the Supplemental Appendix).

Overall, we find that the field of biomolecular modeling and simulation is not only thriving in
this era of rapidly evolving genomics sciences and technology, but also a truly exemplary multidis-
ciplinary field that exploits, integrates, and applies numerous elements from science,mathematics,
technology, and engineering to solve fundamental scientific problems that are impacting human
health.

In the next section, we present metrics of the field’s rise in popularity, as reflected by publica-
tion records and computer power progress. Sections 3 and 4 discuss, in turn, examples of success
and failure. Modeling-inspired experiments and experimental–modeling collaborations are noted
in Section 5.We then discuss, in Section 6, the impact of community-wide initiatives like the Crit-
ical Assessment of protein Structure Prediction (CASP), RNA-Puzzles, Foldit, and Eterna on the
field’s evolution. We summarize our general findings in Section 7 and offer recommendations to
accelerate the field’s progress in Section 8.

In a separate review, Schlick & Portillo-Ledesma (172) expand on aspects of technology ad-
vances in the field, such as knowledge-based (or data-mining) versus physics-based approaches and
the role of hardware and software development in the field’s evolution. A recent review by Dill
and colleagues (23a) further discusses the field’s progress, focusing on the role of computational
molecular physics in advancing protein modeling on high-performance computing platforms,
the importance of enhanced sampling methods, and contributions made by community-wide
exercises.

2. METRICS OF THE FIELD’S RISE IN POPULARITY

As discussed in our previous perspective (171), the rise in popularity of the molecular modeling
and simulation field is evident from the steady increase in the number of scientific publications
since 1970. Earlier, we noted an exponential increase in publications since 1990, commensurate
with the advent of supercomputers, and a sharper slope since 2005.

2.1. Publication Volume

As shown in Figure 2a, the increase in publication volume has been sustained. To obtain these
data,we surveyed the Scopus database for peer-reviewed articles related to biomolecularmodeling.
Figure 2b shows the 20 journals with the highest numbers of biomolecular modeling articles from
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this search. An overall growth of modeling articles is also seen for these journals, with a particular
increase in more diverse journals that do not specialize in biomolecular modeling. Figure 2c
shows the trend of modeling articles across high-impact journals. A similar growth trend is
seen, demonstrating continued outreach and impact of modeling applications into medicine and
biotechnology (for trends of journals that rank 21 to 35, see Supplemental Figure 1).

2.2. Simulation Techniques and Programs

In Figure 2d, we further decompose the modeling papers from Figure 2a according to sim-
ulation techniques. Evaluation by technique shows that MD dominates, followed by quantum
mechanics (QM),Monte Carlo (MC) simulations, coarse-grained (CG) approaches, and quantum

Rm
ax

 (T
FL

O
PS

)

f

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

“Molecular dynamics”
“Monte Carlo”
“Ab initio”
“Coarse graining”
“Quantum mechanics/
molecular mechanics”

1990 1996 2002 2008 2014 2019

d

Year

N
um

be
r o

f b
io

m
ol

ec
ul

ar
m

od
el

in
g 

pa
pe

rs

0

500

1,000

1,500

2,000

2,500

3,000

e

1990 1996 2002 2008 2014 2019

Year

N
um

be
r o

f b
io

m
ol

ec
ul

ar
m

od
el

in
g 

pa
pe

rs

AMBER
GROMACS
CHARMM
NAMD
OPLS
GROMOS
UFF
MMFF
COMPASS
Desmond

0.001

0.01

0.1

1

10

100

1,000

10,000

100,000

25-bp DNA

fip35

HIV-1
capsid
HIV-1
capsid

Nuclear core complex

DNA

1994 1999 2004 2009 2014 2019

Villin

Year

Fastest
500th fastest
Fastest academic
Milestone simulations
Folding@home
(×86 TFLOPS)

bc1 (membrane)bc1 (membrane)

CypA/CA
complex
CypA/CA
complex

Influenza A
H1N1
(Cali)

GATA4
gene

GATA4
gene

Influenza A
H1N1

(Blue Waters)

(Caption appears on following page)

www.annualreviews.org • Biomolecular Modeling and Simulation 273

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://www.annualreviews.org/doi/suppl/10.1146/annurev-biophys-091720-102019


Figure 2 (Figure appears on preceding page)

Metrics of the field’s rise in popularity and the evolution of computational performance. (a) Biomolecular
modeling papers per year in peer-reviewed journals, as found in Scopus using the query search “molecular
dynamics” OR “biomolecular simulation” OR “molecular modeling” OR “molecular simulation” OR
“biomolecular modeling”. (b) Biomolecular modeling papers from panel a in the 20 journals with the highest
numbers of modeling papers, rank-ordered according to the average number of modeling papers across the
years sampled. (c) Biomolecular modeling papers from panel a appearing in high-impact-factor journals,
rank-ordered by the SCImago Journal Rank (SJR) h-index. (d) Biomolecular modeling papers from panel a
decomposed by method using the query search ((“molecular modeling” OR “molecular simulation” OR
“biomolecular modeling” OR ‘biomolecular simulation”) AND (“method name”)), where method name is
“molecular dynamics”, “Monte Carlo”, “ab initio,” “coarse graining”, or “quantum mechanics/molecular
mechanics”. (e) Biomolecular modeling papers from panel a decomposed by use of seven popular molecular
dynamics packages and force fields using the query search ((“molecular modeling” OR “molecular
simulation” OR “biomolecular modeling” OR ‘biomolecular simulation”) AND (“package/force
field”)), where package/force field is Amber (140), CHARMM (24), GROMACS (16), NAMD (145),
OPLS (81), GROMOS (57), UFF (157), COMPASS (191), MMFF (60), and Desmond (22). ( f ) Ranked
overall and academic computational systems as reported according to the LINPACK benchmark, as
assembled in the Top500 supercomputer lists (www.top500.org). The estimated total speed for the
Folding@home distributed computing project is shown in x86 TFLOPS for direct comparison with
LINPACK speeds. Biomolecular modeling milestones are dated assuming the computations were performed
about a year prior to publication, except for the two 1998 publications, which we associate with
computations started in 1996. These include the 25-base-pair DNA system using NCSA SGI machines
(204); villin using the Cray T3E900 (43); the bc1 membrane complex using the Cray T3E900 (70); the
B-DNA dodecamer using MareNostrum/Barcelona (141); the fip35 protein run on NCSA Abe clusters (49);
influenza A H1N1 using the Jade supercomputer (158); the HIV capsid using the Titan Cray XK7 (143); the
GATA4 gene using the Trinity Phase 2 (83); and three simulations on Blue Waters, the nuclear core complex
(50), the CypA/CA complex (111), and influenza A H1N1 (44). For the simulations in Blue Waters, which
has opted out of the Top500 benchmark since 2012, we use estimates of sustained system performance/
sustained petascale performance from 2012 and 2020 (14).

mechanics/molecular mechanics (QM/MM) calculations.Figure 2e shows papers from Figure 2a
decomposed by force field and software package.We see that Amber and CHARMM continue to
show increasing usage, as do open source packages likeGROMACS andNAMDdue to their ready
availability as well as suitability for parallelized computer architectures.

2.3. Computational Power

The dramatic increase in computational power since 1990 has certainly helped fuel the field, but
how do the computers used in biomolecular modeling compare to the fastest computer systems
available today? We assess this feature in Figure 2f by comparing computer power used in
landmark simulations (see Supplemental Table 1), namely those notable for large system size
or long simulation span, to the fastest systems available using the biannual Top500 ranking (see
Supplemental Table 2). In Top500, each computer is ranked according to its maximal-achieved
performance (Rmax) measured by the LINPACK benchmark, a test to solve a dense system of
linear equations.

For the landmark simulations performed on Blue Waters, which opted out of the Top500, we
approximate the speed by using estimates of sustained system performance/sustained petascale
performance reported in 2012 (14) and the peak performance reported in 2020 (http://www.
ncsa.illinois.edu/enabling/bluewaters). We also include computational speed for the
Folding@home distributed computing network in x86 TFLOPS, an estimate of an x86 class
CPU (15). Overall, we see that landmark biomolecular simulations have remained on par, even
exceeding the world’s fastest computers over the periods 2008–2011 and 2014–2016. Technology
has clearly helped fuel the field and will undoubtedly continue to do so (172).
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Figure 3

Milestone simulations in biomolecular modeling showing evolution in molecular dynamics timescale and system size. Consistent with
Figure 2f, we assume that computations were performed one year before publication, except for the publications in 1998, for which we
assume that the calculations were performed in 1996. The simulated systems in temporal order are: 25-base-pair DNA (5 ns and ∼21k
atoms) (204), villin protein (1 µs and 12k atoms) (43), bc1 membrane complex (1 ns and ∼91k atoms) (70), B-DNA dodecamer (1.2 µs
and ∼16k atoms) (141), Fip35 protein (10 µs and ∼30k atoms) (49), Fip35 and BPTI proteins (100 µs for Flip35 and 1 ms for BPTI, and
∼13k atoms) (182), nuclear pore complex (1 µs and 15.5M atoms) (50), influenza A virus (1 µs and >1M atoms) (158), NMDA receptor
in membrane (60 µs and ∼507k atoms) (187), tubular CypA/CA complexes (100 ns and 25.6M atoms) (111), HIV-1 fully solvated empty
capsid (1 µs and 64M atoms) (143),GATA4 gene (1 ns and 1B atoms) (83), and influenza A virus H1N1 (121 ns and ∼160M atoms) (44).

2.4. Landmark Simulations

Figure 3 highlights these milestone simulations. Early important simulations in 1996 included
the ns simulation of the 25-base-pair DNA (204) and µs simulation of villin (43), and the short
simulation of the huge bc1 membrane complex (70) in 1998. Later on,µs timescales were achieved
for much larger systems, such as the B-DNA dodecamer in 2006 (141). The 2007 long 10 µs
simulation of the fast-folding Fip35 protein (49), and the subsequent misfolding into an α-helical
structure in spite of the sufficiently long sampling, helped reveal limitations in state-of-the-art
force fields.

The ms simulations of small proteins in 2009 (182) were made possibly by the specialized
hardware of the Anton supercomputer (180), with architecture and software optimized for ef-
ficient parallelization of nonbonded interactions (22). Large explicit-solvent ms simulations are
now possible for proteins (182), membrane complexes (187), and other systems.

Several simulations from the Schulten group on the Blue Waters supercomputer have greatly
advanced both the size and trajectory lengths of biomolecular systems.These include theµs simu-
lations of the 15.5-million-particle nuclear pore complex in 2013 (50) and CGmodels of influenza
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A (≥1M particles) in 2014 (158). In 2015, the Schulten group simulated a huge 25.6 million–atom
antiviral complex for 100 ns (111) and, in 2016, the enormous 64.4 million–atomHIV-1 capsid for
1.2 µs (143). Recently, the Amaro group extended these limits by simulating on Blue Waters the
first explicitly solvated viral lipid envelope of the influenza H1N1 virus of approximately 160M
atoms (44).

Specialized software, like the cellPACK software by Olson and colleagues (80), has also helped
expand the system size and trajectory length limits. Recently, the first billion-atom biomolecular
simulation of the entire GATA4 gene was achieved based on our nucleosome-resolution GATA4
model using the state-of-the-art MD program GENESIS performed on the Trinity phase 2 su-
percomputer at Los Alamos (83).

2.5. Overall Simulation Trends

Overall, tremendous progress is evident from the publication volume, varied techniques, and force
fields and simulation packages, as well as simulation trends in system size, trajectory lengths, and
high-speed computers. A bright future can certainly be anticipated on this basis.

It has already been stated (195) that the computational biology community has realized an
increase of three orders of magnitude in simulation scope per decade.The trends that we illustrate
in Figures 2 and 3 suggest that biomolecular researchers have utilized well and will continue to
exploit ever more powerful machines with combined software and hardware advances.

Across the world, technology corporations like IBM, Google, Intel, Apple, and others are rac-
ing to build quantum computing machines for cloud services. While such technological devel-
opments have been fueled by international competition or smartphone and video game markets,
biomolecular modelers continue to exploit state-of-the-art resources to study biologically impor-
tant questions with improved algorithms. These combined advances will undoubtedly continue to
drive the field forward and push its frontiers in terms of larger systems, longer simulations, and
biophysical insights, and it will ultimately close the gap between experimental and computational
timescales.

3. MODELING AND SIMULATION SUCCESSES

Because computations in biology allow researchers to follow the dynamics of biomolecular sys-
tems, connect static experimental structures to pathways, or explore mechanistic questions, nu-
merous success stories can be collected from labs worldwide pursuing such problems, as detailed
in our prior perspective (171). In this section, we highlight general areas of notable success that
are likely to impact future research in modeling and its application to biomedicine. We focus on
protein folding, biomolecular design,machine learning (ML) and artificial intelligence, prediction
of protein flexibility, and force field polarization, although there are many more.

3.1. Equilibrium Simulations of Protein Folding

Since Anfinsen (9) first proposed his thermodynamic hypothesis, protein folding has been a central
model problem in biomolecular modeling.Due to the enormity of the conformational space, find-
ing explicit solvent trajectories with sufficient sampling and resolution to capture the full folding
and unfolding pathways of proteins has remained a computationally demanding challenge even for
small peptides, despite advances in computational speed and power. Physics-based models, which
describe molecular behavior based on molecular mechanics principles (167), have been successful
since the 1960s, as they can provide us amechanistic understanding of the pathways, structures, and
energetics involved. Although knowledge-based approaches using Google’s α-fold were shown
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recently to be very powerful for folding proteins, there is no doubt that force field–based models
will continue to make fundamental impacts (for a separate review on this issue, see 172).

One of the landmark simulations in this context is the reliable folding and unfolding of a β-
heptapeptide polymer (36). The relevant pathways were possible to capture decades ago because
the frequency of the interchange between the folded and unfolded conformations is high relative
to the simulation timescale.

As state-of-the-art examples, Piana and colleagues characterized the thermodynamics and ki-
netics of the folding and unfolding of several proteins near their melting temperature by µs to ms
atomistic simulations (110) on Anton (180, 181). Recently, they reported the first simulation of
protein folding inside the cavity of a chaperonin protein (148). The chaperonin strongly interacts
with the unfolded protein, stabilizing it and slowing the folding process compared to the rate in
solution. Such interactions could help substrates escape kinetic traps along the pathway associated
with compact, misfolded states (Figure 4a).

Better sampling (54, 165, 166), better force fields, and innovative computational approaches
are generally needed to attack the problem broadly using available experimental information.

For example, Markov state models were used to characterize folding and misfolding mech-
anisms of a dimeric protein (183), resulting in the finding that folded and misfolded states can
be reached from both pathways. Molecular fragment replacement (19) can fold proteins from ex-
tended states by ensuring consistency between local structures and experimental nuclear magnetic
resonance (NMR) chemical shifts. Replica exchange MD and accelerated MD simulations have
been used to study the effects of denaturing and stabilizing agents on folding processes (2) and
the folding of helical proteins (42). CGmodels have been used to study the folding of intrinsically
disordered proteins (IDPs) involved in neurodegenerative diseases (150, 155).

For many specific cases where experimental data are available, protein folding can now be
addressed with advanced sampling combined with state-of-the-art force fields.

3.2. Protein and Nucleic Acid Design

Computational tools and algorithms to design novel sequences and structures have played an im-
portant role in the field of biomolecular structure, as they apply our growing knowledge of struc-
tures and mechanisms to new potential therapeutic and technological designs.

One of the most attractive outcomes in biomolecular modeling is the engineering of proteins
with specific folds and binding partners based on peptide sequence, theoretical principles, and
computational methods. The 2002 engineering of the Trp-cage peptide with a novel fold and fast
folding kinetics (128) helped launch miniprotein design (11), potentially offering useful scaffolds
for various applications like biomolecular modeling or catalysis. Rational design based on known
rules and fragment-based design was used to create other intriguing assemblies of secondary struc-
ture motifs (e.g., 12, 34, 105), providing insights into stabilizing tertiary structure interactions.

Various high-throughput miniprotein design techniques, such as the massively parallel de novo
protein design platform of the Baker group (29), can design proteins with customized shapes to
bind therapeutic targets. Thousands of miniproteins can be designed by generating scaffold li-
braries of hundreds of backbone geometries and docking them onto targets, followed by high-
affinity optimization.

Further advances are also coming from expanding rotamer libraries derived from experimental
data, such as that created by the Daggett group by MD sampling (27). The modular design of
protein binding pockets based on known structures (66) has also advanced the field.

Specific therapeutic or biophysical targets and their binding can now be addressed through
protein design. Reminiscent of the predictions that we quoted in 2011 (171) from The Economist
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Examples of modeling successes. (a) Protein folding. The folding of a small protein (top right), villin, inside the GroEL protein cavity
(top left) is compared to its folding in bulk. The corresponding energy profiles of folding show significant differences in the shape of the
unfolded basin, indicating the role of the chaperonin protein in stabilizing unfolded states. Panel adapted with permission from
Reference 148. (b) RNA novel motif design. Shown is a flowchart of the computational pipeline for design of RNA-like tree graph
topologies (73, 75). In these tree graph representations of RNA secondary structures, edges denote stems, and vertices denote loops,
bulges, and junctions (169). We use graph partitioning to segment the target RNA-like graph into subgraphs, extract the corresponding
atomic fragments from our RAG-3D database, construct a new sequence or structure using fragment assembly, and screen the
top-scoring sequences using RNA 2D structure prediction programs to produce successful sequences that will fold onto the target
RNA-like topology (73–75, 117). (c) AlphaFold performance on prediction of inter-residue distances. Inter-residue distance
distributions are obtained from the experimental structure (top) and predicted structure (bottom) of the miniprotein gHEEE_02 (right),
showing good agreement. Distance maps were obtained from https://deepmind.com. (d) Cloud computing to accelerate molecular
dynamics. Extensive nonequilibrium simulations of nicotine unbinding from the nicotinic acetylcholine receptor are shown. The Cα
fluctuation levels (colored on a scale from blue to red as fluctuations increase) show the sequence of structural changes coupled to the
unbinding of the nicotine from the receptor that leads to its activation through a conformational change. Panel adapted with
permission from Reference 135.

in 1998 “that most chemical experiments [may one day be] conducted inside the silicon of chips
instead of in the glassware of laboratories,” recent protein blacksmithing (109) techniques apply
mechanical deformations along collective modes to encourage equilibration. While it was unre-
alistic 20 years ago, protein engineering could become routine in the next decade.
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Computational design of nucleic acids is also an active and attractive area in the field, with
biophysical, biomedical, and industrial applications (173, 176). A pioneering notion in DNA
nanotechnology developed by Seeman (175) in 1982 to demonstrate how to generate DNA se-
quences that fold into junction topologies has been followed by the development of computational
tools that combine thermodynamics, energy minimization, stochastic search, evolutionary infor-
mation, and experimental data for nucleic acid design (7, 73).

DNA design tools (7) guide DNA strands into tertiary structures that are then optimized.
DNA origami (161) has been used to assemble inorganic nanostructures and proteins (176). Short
designed oligonucleotides labeled with fluorophores (DNA-PAINT) that bind to specific genome
regions are used for genome visualization (84). Designed DNA molecules are also used to create
nanoparticles with biomedical applications, such as drug delivery (201).

RNA design tools (7) use thermodynamic properties, such as melting temperatures and Gibbs
free energies, stochastic searches, or graph theory elements, to optimize construction of novel
RNA motifs. In our group’s pipeline (Figure 4b), we apply a graph theory–based approach with
graph partitioning and fragment assembly tools to design RNA sequences that fold onto novel
RNA folds predicted by our RNA clustering analysis of RNA’s theoretical motif universe (73).
This computational pipeline has recently been adapted to identify SARS-CoV-2 viral drug targets
by destroying the pseudoknot of the frameshifting element (174).

RNA design has been successful in nanomedicine, for example, in the design of RNAs for
therapeutic diagnostics (23). Engineered riboswitch elements are used, for example, to regulate
gene expression, to control metabolic flux, and as fluorescence biosensors (61).

There are many challenges involved in the design of biomolecules, including imperfections
in large-structure predictions and modeling of RNA molecules that interact with proteins and
other macromolecular complexes (173). Because the amount of biological sequence data is grow-
ing faster than the development of algorithms and increase of computer power, there is a contin-
uous need for faster and parallel algorithms for filtering the designs, assembling larger structures
hierarchically, and dealing with multiple strands or complex designs (39).

3.3. Machine Learning and Artificial Intelligence Applications

The increased usage of ML algorithms in biology has great potential to discern patterns and
extract salient features from large and complex data sets, such as brain neural networks, genomic
data, or protein–protein complexes.

In biology, ML approaches have for a long time helped generate comparative structural and
functional predictions for proteins using sequence–structure similarity and inference of function
from evolutionary relationships. Other important applications of known structural databases are
fragment assembly and design and virtual screening of active compounds for drug discovery. In
applications where approximations made by physics-based methods fail, or where the use of ex-
perimental constraints is crucial, knowledge-based methods can be the methods of choice (for
recent reviews, see 59, 132). The sequence and structural databases that have been curated since
the 1970s provide a gold mine of data, driving the biomolecular modeling field.

Neural network models can also be particularly successful for classification and prediction
problems. Such approaches are based on mathematical models of the brain. Community exer-
cises such as the Tox21 toxicology prediction challenge (114) and the CASP (179) have demon-
strated their potential. Notably, the 2018 CASP experiment highlighted Google’s AlphaFold sys-
tem for de novo protein structure prediction; this approach outperformed all competitors in its
category (94, 178). AlphaFold uses three neural networks trained to predict the distribution of
distances between every pair of residues within a target protein (Figure 4c), estimate the accuracy
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of the candidate structures, and generate protein structures (178). This approach led to dramatic
progress in de novo structure prediction due to better contact and inter-residue distance prediction
(94).

Another important recent application involves the use of neural networks to accelerate
conformation-dependent electronic structure calculation for organic semiconductors (72). Such
problems are computationally expensive: CG simulations are required for conformational sam-
pling, mapping thousands of structures onto their atomistic representation, and performing QM
calculations to obtain orbital energies. By using artificial neural networks trained to approximate
electronic structure from CG configurations, the time-consuming components of mapping from
CG to atomic coordinates and QM calculations can be eliminated.

In the area of genome modeling, neural networks have been used to model 3D chromosome
conformations at 50-kb resolution. Di Pierro and coworkers (38a) trained neural networks with
ChIP-seq data of epigenetic marks to produce chromatin-type sequences. These sequences were
then used as input to a physical model for chromatin folding to obtain conformational ensembles
of specific chromosomes. With this approach, genome folding based on epigenetic marks can be
predicted.

Importantly, the quality and robustness ofML approaches are highly dependent on the training
data set, and rigorous testing and validation are needed to avoid false positives, biases, or overfit-
ting. Nonetheless, ML- and artificial intelligence–based methods, in conjunction with force field
methods, can make a huge impact on our ability to predict, simulate, and understand biomolecular
systems.

3.4. Modeling Target Flexibility in Drug Design Studies

The prediction of protein flexibility is important to account for allosteric effects in targeted drug
design. Exploring the large set of conformations available to a drug target helps improve design
accuracy. G protein–coupled receptors (GPCRs), for example, are highly flexible and configura-
tionally complex (97), so computations can help narrow down their target binding areas.

A wide range of novel MD simulation methods are currently being applied to investigate the
interactions between GPCRs and ligand molecules (192). For example, accelerated MD devel-
oped by the McCammon group was used to engineer the target flexibility in virtual screening for
drug-like compounds (121, 122). This modeling approach successfully discovered new allosteric
modulators of theM2 muscarinic acetylcholine receptor, a potential target to treat heart diseases.
Later, µs atomic simulations on Anton helped determine binding modes and drug–receptor in-
teractions for multiple allosteric modulators of this receptor (40).

In another study, simulations on Anton elucidated the mechanism by which GPCRs activate
heteromeric G proteins by enhancing guanosine diphosphate release (41). Results revealed that
GPCRs accelerate nucleotide release by favoring a structural rearrangement on the G protein that
weakens its nucleotide affinity.

Recently, extensive equilibrium and nonequilibrium MD simulations were performed to un-
derstand how the agonist nicotine affects the nicotinic acetylcholine receptor, an ion channel that
modulates synaptic signaling of a wide range of neurotransmitters (135) (Figure 4d). The Or-
acle Cloud infrastructure made possible 450 simulations of 5 ns in 5 days, notably accelerating
the speed of discovery compared to shared local high-performance computing resources. By an-
alyzing the Cα displacement, researchers were able to describe the receptor response to nicotine
unbinding, delineating a signal propagation pathway that may be relevant to ion channels.

Other important areas of GPCR research include study of membrane cholesterol effects on
structure and function (177) and free energy predictions of experimental mutagenesis and ligand
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modifications (20). High-throughput methods for engineering GPCR flexibility have now been
developed, such as the GPCR-ModSim web server (48).

More general methods for predicting protein flexibility combine MD simulations with experi-
mental data. For example, the popular PredyFlexy method combines root mean square deviations
(RMSDs) of MD trajectories with crystallographic B-factors to define flexibility classes through
protein sequence predictions (37).Methods like FLEXc,which utilize neural networks to combine
evolutionary sequence information with amino acid flexibility statistics, can also perform well in
terms of predicting secondary structures, solvent accessibility, and amino acid properties (203). A
clever alternative approach is the Site Identification by Ligand Competitive Saturation (SILCS)
developed by the MacKerell group (58): The protein target is immersed in an aqueous solution
with multiple drug-like ligands, and the system is sampled by MD or MC simulations to allow
competitive binding to a flexible target.

3.5. Polarization

Fourth-generation force fields now include polarizability effects to better treat induced electronic
polarization, improving on effective empirical fixed charges. Several types of classical polarization
models exist: Drude oscillators, the fluctuating charges model, and inducible dipoles. Some of
the latest polarizable force fields are AMBER, AMOEBA, and SIBFA, which use induced dipole
models; CHARMM-Drude, GROMOS, and OPLS, which use the Drude oscillator model; and
CHARMM-FQ and ABEEMσπ , which rely on the fluctuating charge model (for recent reviews,
see 10, 77, 116). Since reparameterization of the entire force field is required to generate a polar-
izable force field, the effort is substantial, and there is a time lag until users switch force fields.

Initially parameterized for small molecules, polarizable force fields are increasingly being ex-
tended to include more classes of macromolecules. For example, the AMOEBA and CHARMM
polarizable force fields have recently been extended to RNA (101, 209), and several polarizable
force fields are applicable to lipids (31), carbohydrates (63, 138, 139), and organic molecules (108).

Lipid-parameterized force fields are more accurate for studying phospholipid bilayer mem-
brane systems because they provide better descriptions of the dipole potential across the water–
lipid interface (104). Polarizable water models, such as the six-site SWM6 model, better de-
scribe local hydrogen bonding structures (206). Similarly, hydrogen bonds formed between water
molecules and protein residues, and within protein residues, are more accurate when treated with
polarizable force fields (130).

For protein simulations, the accuracy of polarizable force fields has been evaluated for structure
refinement, IDPs, and protein folding (197). Due to a better description of the protein–water
interactions compared to additive force fields, polarization was found to improve protein structure
refinement and conformational sampling of IDPs. However, polarizable force fields can fail in
finding native structures of proteins due to overstabilization of the open structures by protein–
water interactions.Updated polarizable force fields for proteins, such asDrude-2019 (107), further
improve the treatment of hydrogen bonds and backbone and side chain parameters to remedy this
problem.

For protein–metal interactions, Ren and colleagues have shown that the inclusion of many-
body polarization effects is necessary to properly describe metal selectivity (78) and metallopro-
tein structures and energies (79). To model the interaction between ATP and Mg2 + correctly,
polarizable force fields are needed (196). For protein–ligand interactions, the AMOEBA po-
larizable force field has demonstrated excellent performance in predicting binding affinities in
the 2019 Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) challenge
(6).
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In nucleic acid modeling, polarizable force fields have been successful in describing π–π and
ion molecular interactions, where polarization and charge redistribution are important. For ex-
ample, the MacKerell group reported that the ionic distribution and ion-dependent DNA confor-
mational dynamics are in better agreement with experiments when using polarizable force fields
compared with additive force fields (162). Polarization was also important for capturing base flip-
ping (102). Similarly, in the development of AMOEBA for nucleic acids and aromatic molecules,
considering the crucial π-electron polarizability was found to be important for correctly describ-
ing the liquid structure of benzene (208).

Some biomolecular applications apply polarizable force fields in QM/MM schemes to account
for electronic polarization in the MM portion (21, 113). Thiel’s group has suggested that polar-
ization only modestly affects computed activation and reaction energies (21, 51).

Importantly, most force fields only work well for the classes of molecules that they were de-
signed to work for, such as globular proteins. Better force fields and broader classes of systems
are now continuously becoming available. Further applications and developments are discussed in
References 10, 77, and 68.

4. INSTRUCTIVE MODELING AND SIMULATION FAILURES

Many general failures and limitations of biomolecular modeling applications regarding force fields
or sampling algorithms are well known. This is especially true as our molecular subjects become
more complex and ambitious, deviating from the simpler chemical systems and relatively short
time frames utilized in parameterizing general-purpose force fields.

Experienced modelers often train young scientists so that they learn from incorrect models,
protocols, and/or parameters. Well-trained practitioners learn quickly about the importance of
ample statistics, tests for robustness, convergence limitations, and so on.

A common concern is force field parameters for new applications. Known vulnerabilities in-
volve poor convergence in replica-exchange MD, normal-mode analysis, and various path sam-
pling approaches.

As the field matures, and molecular modeling simulations are applied increasingly by users
rather than by developers of modeling packages, old problems resurface, and new ones emerge.
Failures are instructive to novices and experts alike and help us learn, diagnose, and fix errors and
deficiencies in our models and algorithms, some expected and many surprising.

4.1. Force Field Limitations

Areas of force field weaknesses include modeling of disordered proteins (159), RNAs (124), and
nucleic acid–protein complexes (86, 91).

IDPs, which are important for many biomolecular functions, are poorly modeled by modern
force fields, as these force fields were originally developed for folded proteins (146, 147). In gen-
eral, they do not capture well representative ensembles of structures and associated transitions.

Several groups have developed modifications for reliable studies of disordered proteins. One
example is the a99SB-disp force field (159), parameterized by an iterative process in which vari-
ables are adjusted until the simulations reproduce experimental data. Another example is the
AMBER ff14IDPs force field, containing revised φ/ψ dihedral terms to correct the dihedral angle
distributions of some residues associated with disorder (185). Force fields can also fail in describing
ordered proteins; common limitations are the bias toward helix conformations and the difficulty
in predicting β-hairpin folding motifs (32).

For RNA, improvements in torsion and van derWaals parameters can help remedy some prob-
lems that emerge in reproduction of experimental structures. However, recent work suggests that
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Figure 5

Examples of modeling failures. (a) RNA force fields. Riboswitch aptamer simulations with different force fields indicate that structural
details and stabilities are force field dependent. With the CHARMM and ff99 force fields, the aptamer pseudoknotted fold is distorted
compared to the X-ray structure, whereas with the ff99bsc0χOL3 force field, the aptamer fold is maintained. Panel adapted with
permission from Reference 13. (b) Configurational sampling. A large water box is required to stabilize the unliganded tetramer of the
hemoglobin. The unliganded structure obtained with molecular dynamics simulations using a water box of 150 Å aligns well with the
corresponding experimental structure (right), whereas the unliganded structure obtained with a water box of 120 Å is instead similar to
the experimental structure of the liganded conformation (left). Panel adapted with permission from Reference 45. (c) Advanced sampling
techniques. Different free energy profiles are obtained with umbrella sampling for the forward (Fwd) and backward (Bwd) processes of
a conformational change for a riboswitch in the presence (Lig) and absence (Unlig) of a ligand, a consequence of poor convergence of
the simulations. Panel adapted with permission from Reference 38. (d) QM/MM simulations. Simulations of solutes treated at the
quantum-mechanical level embedded in a rigid water model treated by classical molecular mechanics can lead to poor sampling due to
insufficient coupling between the two regions. Shown is the incorrect distribution of the methanol O-H bond length obtained from
QM/MM simulations (violet curve) compared to the ideal distribution (green curve). Panel adapted with permission from Reference 65.
Abbreviations: MD, molecular dynamics; QM/MM, quantum mechanics/molecular mechanics; RMSD, root mean square deviation.

RNA force fields may still be lacking, even for reproducing tetraloop folding in comparison with
NMR and X-ray data (95). Moreover, some RNA force fields produce structure instability during
the simulation trajectory, leading to the prediction of incorrect structures (13, 124) (Figure 5a).
The protocols used may also be a factor.
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Current force fields also struggle to describe complexes between nucleic acids and proteins. For
example, µs simulations of several RNA–protein complexes showed that some systems can pro-
gressively deviate from the experimental structures during the course of a simulation due to force
field imbalances, incorrect starting experimental structures, and/or poor treatment of the system
flexibility due to insufficient sampling (91). Similarly, DNA–protein interactions and binding free
energies are still notoriously difficult to predict due to insufficient description of DNA–protein
interface relaxation (86).

4.2. Molecular Dynamics and Configurational Sampling Limitations

Problems involved in the numerical integration of the equations of motion in MD—concerning
stability, resonance, and accuracy—are well recognized (167). In addition, numerous other details
in the simulations, from boundary conditions to equilibration protocols, can lead to artifacts due
to the inherently chaotic nature of biomolecular simulations (167).

A recent example related to hemoglobin reported by Karplus and colleagues (45) shows
the consequences of the water box dimension that surrounds a complex biomolecular system
(Figure 5b). The unliganded tetramer of hemoglobin was found to be stable in solution only
when the water box contained 10 times more water molecules than the standard size for such a
system. The standard size in this case does not account for the hydrophobic effect, crucial for
the stabilization of the unliganded conformation and agreement with experiments. This report
stirred some follow-up discussions (46, 52, 53) that suggested that other simulation aspects, like
the extent of statistical sampling, might also influence simulation results.

Insufficient sampling can lead to problems in the calculation of theoretical spectra. Usually,
spectroscopic maps computed fromMD simulations are used to calculate theoretical amide I spec-
tra by connecting observables in the MD simulations to quantum spectroscopic variables (202).
However, large errors in the frequencies are noted when theoretical and experimental spectra are
compared. Such errors have been attributed to improper configurational sampling during theMD
simulation when studying complex systems (26).

Many enhanced samplingmethods were developed to address the sampling limitations of tradi-
tional integrationmethods (e.g., 165, 166).However, such methods are vulnerable onmany fronts.
A study on a conformational change in a riboswitch in the presence and absence of ligand bind-
ing (38) showed that the energy profiles calculated with umbrella sampling for the forward and
backward processes were different (Figure 5c). This poor convergence points to the need to use
more complex collective variables to approximate reaction coordinates and obtain accurate free
energies. Furthermore, the widely used free energy methods to estimate protein–protein binding
often yield large errors, in the order of 6–9 kJ/mol. This is due to the irreversibility of the binding
process, hysteresis, or insufficient sampling of the phase space (144).

A particular area of high failure concerns the modeling of membrane systems. Free energy sim-
ulations of solute–bilayer systems are prone to sampling errors due to the presence of large free
energy barriers not associated with the reaction coordinate considered (127). That is, metastable
states are trapped, and the answers are not reliable. In addition, the free energy calculations
strongly depend on the force field used and the resolution of the molecular model (all-atom versus
CG) (127, 190).

4.3. Other General Failures

In general, protein–protein docking scores and prediction of interfaces have low accuracies (118,
189). However, some tangible progress has been made using better integration of different
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modeling tools with docking procedures, as evident in the latest edition of the Critical Assess-
ment of Predicted Interactions (CAPRI) (103).

In particular, ML algorithms for protein–protein hot-spot prediction (112) are vulnerable to
overfitting due to the small number of samples available for training. They also suffer from imbal-
ances due to the much larger number of non-hot-spots compared to hot-spots, which can alter the
associated clustering optimization. To obtain reliable results, the training database should contain
not only positive examples, but also negative data, which are difficult to define. Finally, the best
prediction method depends highly on the sequence similarity between the training data and the
target system (62).

Similarly, secondary structure prediction methods for large RNAs are often imperfect, as they
are based on minimum free energy algorithms that assume a simple relationship between RNA
structure and free energy. Large RNAs deviate from the minimum free energy status due to their
complex internal environment (173).

Problems have also been recognized in QM/MM simulations, especially concerning bound-
ary treatments. For example, simulations of small solutes treated at a QM level embedded in a
rigid solvent model can lead to poor sampling (Figure 5d). It was shown recently that insuffi-
cient coupling between the high-frequency vibrations of the QM system and the MM rigid water
molecules affects the efficient energy exchange between the two parts of the system (65). As a
result, the solute molecule does not achieve thermal equilibration and leads to incorrect bond-
length distributions. Thus, no universal protocols for QM/MM simulations exist, and tailoring is
often needed.

5. MODELING-INSPIRED EXPERIMENTS AND
EXPERIMENTAL–MODELING COLLABORATIONS

The prediction of structures, functions, and/or mechanisms from biomolecular simulations is a
frequent goal. However, modelers are often hesitant to publish predictions without experimen-
tal validation, as recently discussed by Karplus & Lavery (85). Historically, experimentalists may
have viewed predictions with suspicion (168), but the climate has changed quickly. Collabora-
tions involving side-by-side predictions and experimental validation are now common. In this
section, we describe different categories of modeling predictions with representative examples:
experiments inspired by simulations or theory, theoretical predictions independently confirmed
by experiments, and concurrent experimental and modeling studies.

5.1. Experiments Inspired by Simulation or Theory

New experiments that were motivated by modeling or theoretical computations represent an ex-
citing category.

MD simulations of the sodium-coupled betaine transporter BetP predicted the position of a
second sodium binding site, previously unidentified (87). These results inspired X-ray crystallo-
graphic studies that confirmed the coordinating groups in the second sodium binding site (142).

Mechanistic predictions from modeling followed by experiments have also helped elucidate
protein membrane insertion mechanisms.Microsecond simulations of BamA, a bacterial β-barrel
membrane protein, suggested a dynamic mechanism of membrane permeation: Destabilization of
the interaction between two strands (β1 and β16) leads to a lateral opening of the barrel (134).
Subsequent cross-linking experiments in which artificial disulfide bonds between both β strands
were inserted revealed loss of activity (133), consistent with the predicted mechanism (Figure 6a).

In the area of nucleic acid structure prediction, theoretical and experimental work has in-
spired new experiments. For example, several years of predictions from mesoscale chromatin
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Figure 6

Interplay modeling experiment. (a) Molecular dynamics (MD) simulations of the bacterial protein BamA predicted a membrane
insertion mechanism by lateral opening of the β barrel that involves the strands β1 and β16 (top). Crosslinking experiments created
artificial disulfide bonds between loops L1 and L6 that connect both β strands and confirmed that BamA function was inhibited
(bottom). Panel adapted with permission from Reference 133. (b) MD simulations of the AcrB multidrug transporter with the drug
nitrocefin predicted a drug-binding pocket that includes residues such as I278 and F178 (top). Mutagenesis and biophysics experiments,
which measured the efflux rate at different nitrocefin concentrations, confirmed the role of these residues in the binding of the drugs
(bottom). Panel adapted with permission from References 194 and 89. (c) MD simulations of DNA minicircles predicted the formation
of bubbles and kinks under torsional stress (top). Electron cryo-tomography experiments confirmed the formation of such geometries in
DNA minicircles (bottom). Panel adapted with permission from Reference 69. (d) Chromatin crosslinking experiments show increased
long-range internucleosome contacts without loss of zigzag short-range contacts for metaphase chromatin, compared to interphase
chromatin (top; interaction patterns in green). Mesoscale model of fibers typical of interphase [0.5 LH/nucleosome and nucleosome
repeat length (NRL) = 191 bp] and metaphase (no LH and NRL = 209 bp) chromatin provide the folding mechanism of hierarchical
looping (or stacked loops in 3D) to explain such increases in long-range contacts with maintenance of short-range contacts. This can be
observed in the computed contact maps and fiber structures (bottom), and in the interaction patterns for fibers with NRL = 191 or 209
bp (top, black solid and dashed lines) without LH (left) and with 0.5 LH/nucleosome (right) (56).
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simulations (151) and high-resolution structural data (163, 186) inspired researchers to conduct
single-molecule fluorescence resonance energy transfer (FRET) experiments (88) to study
the modulation of chromatin dynamics by the heterochromatin protein 1α (HP1α), a typical
component of silenced genes. Results revealed that HP1α modulates chromatin dynamics by
transiently binding and stabilizing stacked nucleosomes.

Motivated by a desire for improved accuracy in the field, single-molecule tweezer experiments
(30) have been designed to test how well base pair–level models (BPLMs) (136) predict the
flexibility of double-stranded DNA and RNA. Overall, the results showed that some predictions,
such as those for persistence lengths of double-stranded RNA, were accurate, while others, such
as those for torsional properties, suffered from inaccuracies, revealing a crucial area for further
improvement.

5.2. Theoretical Predictions Independently Confirmed by Experiment

More generally, predictions are often made in computational works to motivate future experi-
ments. Below are several examples in which theoretical predictions were eventually confirmed
experimentally.

Nikaido and colleagues, using all-atom MD simulations, predicted that some residues in
the bacterial multidrug transporter AcrB, a membrane protein involved in antibiotic resistance,
are important for the binding of the drug nitrocefin (194). Three years later, some of these
predictions were confirmed using fluorescent efflux assays of AcrB mutants (89) (Figure 6b).
These experiments further showed that interactions with the drugs doxorubicin and minocycline
were consistent with previous simulations from 2011 (193) and 2013 (160). Together, these
studies shed light into the way substrates are bound to the cavity of AcrB and then extruded by a
conformational change.

The Whitford group, using structure-based MD simulations, predicted a novel tilting
motion of the small ribosomal head subunit (30S) during mRNA–tRNA translocation (131).
Independently, the Blanchard group performed single-molecule FRET experiments to image
the complete translocation mechanism (200). The experimental results revealed an exaggerated
motion of the 30S subunit head, verifying the predicted tilt motion. Taken together, these studies
revealed how the motion of the 30S subunit facilitates the movement of the tRNA into its final
posttranslocation position.

In the area of nucleic acid structure, the sequence-dependent behavior of torsionally stressed
supercoiled DNA and DNA minicircles has long been the subject of experiments and theoreti-
cal work. For example, MD simulations of DNA minicircles predicted spontaneous formation of
noncanonical structures such as kinks, local openings of the double helix, and wrinkles, formed
to relieve bending and torsional stress (96, 123). Recently developed cryo-electron tomography
techniques have confirmed the existence of such 3D conformations in circular DNA structures
(69, 198) (Figure 6c).

5.3. Concurrent Experimental and Modeling Studies

Collaborations between experimentalists and modelers have become common. In this section, we
illustrate such synergies in elucidating transport mechanisms in channels, catalytic mechanisms in
enzymes, study of protein structure, and chromatin folding.

From long (29.5 µs) MD simulations of potassium channels, the Roux group deduced a kinetic
model that predicted the effect of buried water molecules occupancy on the rate of conversion
of the channel from its inactive to its conductive state (137). This model gained support from
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experimental measurements of the channel conversion rate at high osmotic stress. Under these
conditions, water occupancy is reduced, and the conversion rate is accelerated, according to the
predicted mechanism.

Recently, in another channel study, a combination of MD simulations and in vivo experiments
demonstrated that a single residue in the plant aquaporin PIP2 is responsible for water blockage
(25). The residue position at the entrance of the channel serves as a crucial steric gate. Similarly,
mutagenesis studies and MD simulations were used to identify lipid-binding sites in a protein
channel that transports chloride ions (205). Results revealed multiple binding sites, indicating
that the channel gating is allosterically regulated.

Combined QM/MM approaches provide mechanistic insights, with atomic and electronic de-
tail, into enzyme kinetics experiments. In a computer-aided enzyme design study, the Warshel
group performed QM/MM calculations of several mutants of a dehalogenase enzyme to deter-
mine the maximal catalytic improvement that could be achieved by residue substitution (76).
Based on the computational prediction, several mutants were constructed and characterized by
kinetic assays, confirming some predictions and validating the computational strategy. In another
example, the Mulholland group integrated QM/MM simulations with site-directed mutagenesis
experiments to gain insight into the influence of active site residues on the product outcome of a
monoterpene synthase enzyme (99). The simulations revealed the residues responsible for guid-
ing the product outcome, which might be important in the design of altered enzymes to produce
clean products.

In the area of protein structure, Chen & Hub (28) calculated wide-angle X-ray scattering
(WAXS) profiles from MD simulations of several proteins to validate the use of protein dynam-
ics to interpret WAXS experiments. They showed that the water and protein force fields have a
minor effect on the calculated profiles. Further incorporation of atomic fluctuations significantly
increases the agreement between computed and experimental WAXS curves. In a recent study,
long all-atom simulations were combined with rapid pressure-drop experiments to analyze how
water squeezes out of the hydrophobic core as proteins fold (152). Results demonstrated that, for
some proteins, the dehydratation and folding processes occur at different times, and several des-
olvated states are visited before the protein reaches the native conformation, while in others, the
drying and folding processes occur together, and water is excluded from the core as proteins fold.

Finally, the mesoscale modeling of chromatin in the work of Grigoryev et al. (56) has helped
interpret puzzling cross-linking experimental data that showed different interaction patterns for
interphase and metaphase chromosomes. By modeling interphase and metaphase chromatin, they
suggested hierarchical looping as the mechanism that explains the increased long-range inter-
nucleosome contacts without the loss of the zigzag motifs observed in the cross-linking experi-
ments (Figure 6d). These findings were recently supported by chromosome conformation maps
(micro-C) that revealed interdigitated zigzag fibers in mammal cells (64, 92). In another study,
by simulating chromatin fibers containing segments with acetylated and wild-type histone tails,
Rao et al. (156) suggested an epigenetic mechanism of segregation induced by acetylated domains
on the kilobase level, commensurate with patterns observed in experimental contact maps on a
larger scale. Recently, the structural effects of different modeled linker histone protein densities
bound to chromatin fibers were also used to help interpret different chromatin architectures in
lymphoma cells (207).

6. THE IMPACT OF COMMUNITY EXERCISES AND WEB PROGRAMS

Community exercises and games that bring together researchers with common goals help propel
the field of biomolecular modeling. Such initiatives reveal what works and what fails, and also
heighten interest in scientific problems and solutions, often helping recruit fresh talent.
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6.1. CASP and RNA-Puzzles

The community-wide CASP (125) has helped advance methods for predicting protein structure
from amino acid sequences since 1994. CASP exercises occur biannually and provide researchers
worldwide with the opportunity to test their predictions for established targets that will soon be re-
solved experimentally. In this way, the exercise illuminates the current state-of-the-art techniques
and software for protein structure prediction and refinement.

The number of CASP participants increased continuously from 1994 to 2005, after which it
gradually decreased (see Supplemental Figure 2). Similar trends are observed in the number of
predictions, but with a delay; the maximum number of predictions was reached in 2010. Unlike
the participants trend, the number of predictions increased in 2018 with respect to 2016. With
recent exciting contributions from artificial intelligence, interest in CASP may be revitalized.

CASP results have taught us many things. The quality of template-based modeling predictions
has increased dramatically since 1994 (93). The ab initio modeling category (prediction of targets
with no obvious templates) has yielded a more moderate improvement (1), until recently, when
Google’s AlphaFold system shined (179).

CASP has also highlighted that structure refinement is challenged by random errors in force
fields and poor sampling, prompting force field improvements, new sampling strategies, and
knowledge-based methods to bias simulations (55).

Similar to CASP, RNA-Puzzles, a collective experiment for blind de novo RNA tertiary struc-
ture prediction (35) launched in 2012, has encouraged the community to improve current tools
and develop new approaches by determining the capability and limitations of methods for RNA
tertiary structure prediction from sequence.

There have been RNA-Puzzles rounds focused on the prediction of small and medium RNA
structures (35), large RNA structures (120), and riboswitches and ribozymes (119), with an in-
creasing number of participants and puzzles solved (see Supplemental Figure 2).

Overall, RNA-Puzzles results have highlighted that template-based and homology-based
structure predictions can achieve a high level of accuracy but have emphasized that the predic-
tion of large RNA structures remains challenging, as does the prediction of non-Watson-Crick
interactions. As discussed by Pyle & Schlick (153) and Schlick & Pyle (173), current challenges in-
clude clustering of predicted secondary structure candidates to determine alternative low-energy
states, annotation of RNA motifs and updating of structural databases, quality check of deposited
structures solved by experimental techniques, use of experimental data for proper structural and
functional interpretation, RNA force field inaccuracies for all-atom simulations, generation of
atomic models from CG structures, and modeling of large RNA where few experimental data are
available. With the COVID-19 pandemic, a resurgence of RNA modeling and improvement in
handling large RNAs have been realized.

6.2. Foldit and Eterna, Citizen Science Projects

Other excellent examples of community exercises are Foldit (33) and Eterna (98), which are on-
line programs that challenge players to fold proteins and RNA molecules, respectively, from their
constituent residues. These citizen science projects encourage nonexperts to participate, increas-
ing the general public’s interest in scientific problems in the biomolecular field. They aim to find
the functional 3D structure of a protein or RNA from its sequence using force field–based calcu-
lations as well as human intuition. By modifying the positions of the backbone and side chains to
change inter-residue and residue–solvent interactions, players manipulate the molecules to seek
structures with low energies. The lower is the energy, the higher is the participant score.
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Foldit participants are challenged to design stable folded proteins de novo and create the low-
est free energy model (33). Since launched in 2008 by the Rosetta group, Foldit has attracted more
than 800,000 users, who have solved more than 1,800 puzzles (see Supplemental Figure 2). A
total of 56 designs of soluble proteins were created by 36 different players, representing 20 dif-
ferent folds, including a new fold (90). Foldit predictions were found to substantially outperform
automated algorithms, such as Rosetta (33). By using human creativity and instinct guided by sci-
entific understanding, Foldit has helped advance the de novo protein design problem. Moreover,
it has demonstrated the importance of using human intelligence combined with computational
algorithms to solve structure prediction problems (90).

Eterna players are challenged to design RNA molecules from an initial sequence by chang-
ing, adding, or deleting nucleotide residues to obtain a target conformation (98). Eterna also went
one step further: The best designs will be synthesized in the laboratory. Since launched in 2011,
119,032 users have registered, solving at least one puzzle each (see Supplemental Figure 2). Of
these players, 4,366 have participated in lab challenges. Of the 365,843 designs submitted (see
Supplemental Figure 2), 167,730 have been synthesized, and improvements have been invited.
From these efforts,EternaBot, aML algorithm for determining RNA sequences that fold onto tar-
get structures, was developed. The Eternacon annual meeting brings together players, scientists,
and developers at Stanford University to discuss puzzle solving, scientific advances, and future
challenges.

Similar to Foldit, the Eterna community, as well as the EternaBot algorithm, offers alterna-
tives (8) to automated algorithms. Overall, Eterna has helped accelerate the progress of in vitro
RNA design by generating hundreds of designs and creating a data set of approximately 100,000
potential RNA designs, some of which were subsequently tested.

6.3. Response of the Biomolecular Modeling Community
to the COVID-19 Outbreak

The importance of community collaborations in science has been demonstrated recently dur-
ing the emergence of the COVID-19 pandemic. Besides worldwide collaborations among the
high-performance communities (e.g., BioExcel, https://covid.bioexcel.eu, and the COVID-19
HPC Consortium, https://covid19-hpc-consortium.org) and many others, specific initiatives
have been launched to help develop drugs and vaccines.

CASP has launched a SARS-CoV-2 structure modeling initiative for predicting the structure
of viral proteins. In the first round, approximately 1,600 models were predicted from 52 groups.
These predicted structures aid in the development of vaccines and drugs to help fight this horrific
disease, for example, by recruiting the SUMMIT supercomputer to screen drug databases for
compatible COVID-19 protein target residues (184).

Individual groups have also predicted the structures of many viral proteins. For example, the
DeepMind group from Google has deployed AlphaFold to predict the structure of the membrane
protein and other viral proteins (82). Similarly, many groups are predicting structures of the spike
protein bound to various inhibitors (67).

Foldit and Eterna have both launched challenges related to COVID-19 to help design proteins
to aid in the immune system response upon infection, bind the spike protein of the virus, and/or
design mRNA-based vectors for vaccines.

6.4. Community Progress

Overall, these community exercises and citizen science projects have had a positive impact on the
biomolecular modeling field, as they increase general interest in the field, highlight its importance,
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recruit fresh talent, lead to new approaches, stimulate discussions, and increase data generation
and products. The new communities established by CASP or Eterna attract millennials, bring new
energy into these important scientific efforts, and extend research efforts into the arena of social
networks. Other communities, like the one established by more than 500 developers of the suite
Rosetta for macromolecular modeling and design (100), are revolutionizing and accelerating the
field by encouraging strong collaborations and discouraging competition.

New initiatives will undoubtedly continue to drive the field forward and train a new generation
of science, technology, engineering, and mathematics researchers. As the COVID-19 pandemic
has shown us, scientists are able to come together for the common good quickly and successfully.

7. SUMMARY

Our reassessment of the progress in the field of biomolecular modeling and simulation highlights
how far the field has come from its early days at the dawn of digital computers.The skepticism that
enveloped early molecular computers, replaced by inflated and unrealistic expectations with the
advent of supercomputers and high-speed human genome sequencing, has advanced to a produc-
tive stage where computations and instrumentation are hand-in-hand partners, as well as effective
methods in their own right to exploremolecular structures, functions, andmechanisms (Figure 1).
Improved force fields, better sampling techniques, usage of available information from structural
and functional databases, emerging community exercises and games, emphasis on merging scales,
infusion of clever ideas from many areas of science and engineering, and ever-expanding tech-
nologies have been utilized well and applied successfully to solve and advance many scientific and
medical problems with wide-ranging societal and health impacts. The expeditious responses by
the high-performance computing community to the COVID-19 pandemic illustrate how unified
the goals are and how far the technology has evolved to impact medicine and human health.

Gone are the days where biomolecular scientists worked in isolation. Labs, teams, and nations
are collaborating as never before to address pressing problems, from pollution to energy to pan-
demics. With gene editing approaches, dazzling improvement in structural determination, and
increasing reliability of computational predictions, scientists are well positioned to address many
important problems in science, health, and industry. Despite numerous technical and ethical chal-
lenges that lie ahead, the foundations are firm, and the trajectory of the field is guaranteed to take
us into a bright future.

8. RECOMMENDATIONS

To exploit the field’s great potential for continued impact on society and human health, we make
the following general recommendations.

8.1. Important Algorithmic Directions

The promising CG and multiscale models that bridge multiple scales associated with complex
biomolecular systems (see 172) require better direction and assessment to be effective at large and
applied generally.The many approaches available have not been unified or tested in any consistent
way, as the classical force fields have been.More effort is required to share such approaches, apply
them systematically, and make programs available to the community at large. Similarly, artificial
intelligence and ML approaches can be better shared, organized, and applied in key areas like
structure prediction, ligand binding, or biomolecular interactions.
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8.2. Community Initiatives

Community exercises like CASP and its many descendants or web programs like Eterna and Foldit
have been instrumental in highlighting problems in the field, recruiting a community of scientists
and citizens, and improving state-of-the-art force fields. While some initiatives retire, others will
replace them to engage interest and advance emerging subfields. Perhaps more public funding
could help in encouraging scientists to develop and support such exercises, computer games, and
initiatives. Special societal subsections, such as the multiscale genome organization subsection
just added to the Biophysical Society or the Molecular Sciences Sustainable Software Institute,
can go a long way toward promoting and advancing public interest in subfields of biomolecular
modeling.

8.3. Public Engagement

Biomolecular scientists have done well at engaging public interest and participation in modeling
challenges (e.g., Folding@home, Human Proteome Folding Project), but more could be done.
Introducing molecular modeling and simulation early into the high school curriculum could help
children understand that the molecules of life are not static and that there is much more to ex-
plore related to the activities of these molecules. Problem-based learning in molecular simulation
could help youngsters bridgemany fields and encourage innovation and exploration (see the advice
column to science, technology, engineering, and mathematics students in 170). As our scientific
capabilities advance, for example, in the area of gene editing,we will need a public that understands
both the scientific ethical dilemmas and potential benefits of these technologies. The earlier such
an education begins, the better informed our society can become. The COVID-19 pandemic pro-
vides an excellent ground for introducing many relevant scientific topics to young students, from
infection spread models to phylogenetic trees of the viral genome to drug–target simulations and
vaccine development.

8.4. Multidisciplinarity, Diversity, and Education

Undoubtedly, biomolecular modeling is an exemplary field for merging together many scientific
and engineering disciplines with the goal of solving scientific problems with state-of-the-art tech-
nologies (172). However, more could be done to enhance diversity and outreach. This general
problem in science may be easier to address in our field, where large teams often work together,
and new talent can help look at each problem with a fresh perspective. Against recent discrimi-
natory or biased trends in the world, biomolecular scientists could take the lead in establishing
new programs to include and bring together minorities and accommodate disabilities, starting
from the elementary school level. Curricular changes, experience in research, moving scientific
exhibits, and other educational models could help recruit talent from all corners of the world.
Young people today have taken the lead in making statements about gun control, environmental
damage, and education for all.We still have much work to do to educate better, recruit, and retain
such young talent. We are better together.
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20. Boukharta L, Gutiérrez-de Terán H, Åqvist J. 2014. Computational prediction of alanine scanning and

ligand binding energetics in G-protein coupled receptors. PLOS Comput. Biol. 10(4):e1003585
21. Boulanger E, Thiel W. 2014. Toward QM/MM simulation of enzymatic reactions with the Drude os-

cillator polarizable force field. J. Chem. Theory Comput. 10(4):1795–809
22. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, et al. 2006. Scalable algorithms for molecular

dynamics simulations on commodity clusters. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, pp. 43–43. New York: ACM

23. Bramsen JB, Kjems J. 2012. Development of therapeutic-grade small interfering RNAs by chemical
engineering. Front. Genet. 3:154

23a. Brini E, Simmerling C, Dill K. 2020. Protein storytelling through physics. Science 370(6520):eaaz3041
24. Brooks BR,Bruccoleri RE,Olafson BD, States DJ, Swaminathan S,KarplusM. 1983.CHARMM: a pro-

gram for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2):187–
217

25. Canessa Fortuna A, Zerbetto De Palma G, Aliperti Car L, Armentia L, Vitali V, et al. 2019. Gating in
plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction
in the closed state. FEBS J. 286(17):3473–87

26. Carr JK, Zabuga AV, Roy S, Rizzo TR, Skinner JL. 2014. Assessment of amide I spectroscopic maps for
a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calcu-
lations. J. Chem. Phys. 140(22):224111

27. Carter Childers M, Daggett V. 2017. Insights from molecular dynamics simulations for computational
protein design.Mol. Syst. Des. Eng. 2(1):9–33

28. Chen P-C, Hub JS. 2014. Validating solution ensembles from molecular dynamics simulation by wide-
angle X-ray scattering data. Biophys. J. 107(2):435–47

29. Chevalier A, Silva D-A, Rocklin GJ,Hicks DR,Vergara R, et al. 2017.Massively parallel de novo protein
design for targeted therapeutics.Nature 550(7674):74–79

30. Chou F-C, Lipfert J, Das R. 2014. Blind predictions of DNA and RNA tweezers experiments with force
and torque. PLOS Comput. Biol. 10(8):e1003756

31. Chowdhary J,Harder E,Lopes PEM,HuangL,MacKerell AD,Roux B. 2013.A polarizable force field of
dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations
of lipids. J. Phys. Chem. B 117(31):9142–60

32. Cino EA,ChoyW-Y,KarttunenM. 2012.Comparison of secondary structure formation using 10 differ-
ent force fields in microsecond molecular dynamics simulations. J. Chem. Theory Comput. 8(8):2725–40

33. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, et al. 2010. Predicting protein structures with a multi-
player online game.Nature 466:756–60

34. Craven TW, Cho M-K, Traaseth NJ, Bonneau R, Kirshenbaum K. 2016. A miniature protein stabilized
by a cation-π interaction network core. J. Am. Chem. Soc. 138(5):1543–50

294 Schlick et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



35. Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, et al. 2012. RNA-Puzzles: a CASP-like
evaluation of RNA three-dimensional structure prediction. RNA 18(4):610–25

36. Daura X, Jaun B, Seebach D, van GunsterenWF,Mark AE. 1998. Reversible peptide folding in solution
by molecular dynamics simulation. J. Mol. Biol. 280(5):925–32

37. de Brevern AG, Bornot A, Craveur P, Etchebest C, Gelly J-C. 2012. PredyFlexy: flexibility and local
structure prediction from sequence.Nucleic Acids Res. 40:W317–22

38. Di Palma F, Bottaro S, Bussi G. 2015. Kissing loop interaction in adenine riboswitch: insights from
umbrella sampling simulations. BMC Bioinformat. 16(Suppl. 9):S6

38a. Di PierroM,ChengRR,Aiden EL,Wolynes PG,Onuchic JN. 2017.De novo prediction of human chro-
mosome structures: Epigenetic marking patterns encode genome architecture. PNAS 114(46):12126–31

39. Dirks RM,LinM,Winfree E, PierceNA. 2004. Paradigms for computational nucleic acid design.Nucleic
Acids Res. 32(4):1392–403

40. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, et al. 2013. Structural basis for modulation
of a G-protein-coupled receptor by allosteric drugs.Nature 503(7475):295–99

41. Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, et al. 2015. Structural basis for nucleotide
exchange in heterotrimeric G proteins. Science 348(6241):1361–65

42. Duan L, Guo X, Cong Y, Feng G, Li Y, Zhang JZH. 2019. Accelerated molecular dynamics simulation
for helical proteins folding in explicit water. Front. Chem. 7:540

43. Duan Y, Kollman PA. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond
simulation in aqueous solution. Science 282(5389):740–44

44. Durrant JD, Kochanek SE, Casalino L, Ieong PU, Dommer AC, Amaro RE. 2020. Mesoscale all-atom
influenza virus simulations suggest new substrate binding mechanism. ACS Central Sci. 6(2):189–96

45. El Hage K, Hédin F, Gupta PK,Meuwly M, Karplus M. 2018. Valid molecular dynamics simulations of
human hemoglobin require a surprisingly large box size. eLife 7:e35560

46. ElHageK,Hédin F,Gupta PK,MeuwlyM,KarplusM.2019.Response to comment on “Validmolecular
dynamics simulations of human hemoglobin require a surprisingly large box size”. eLife 8:e45318

47. Deleted in proof
48. Esguerra M, Siretskiy A, Bello X, Sallander J, Gutiérrez-de Terán H. 2016. GPCR-ModSim: a compre-

hensive web based solution for modeling G-protein coupled receptors.Nucleic Acids Res. 44(W1):W455–
62

49. Freddolino PL, Liu F,Gruebele M, Schulten K. 2008.Ten-microsecond molecular dynamics simulation
of a fast-folding WW domain. Biophys. J. 94(10):L75–77

50. Gamini R, Han W, Stone JE, Schulten K. 2014. Assembly of Nsp1 nucleoporins provides insight into
nuclear pore complex gating. PLOS Comput. Biol. 10(3):e1003488

51. Ganguly A, Boulanger E, Thiel W. 2017. Importance of MM polarization in QM/MM studies of
enzymatic reactions: assessment of the QM/MM Drude oscillator model. J. Chem. Theory Comput.
13(6):2954–61

52. Gapsys V, de Groot BL. 2019. Comment on “Valid molecular dynamics simulations of human
hemoglobin require a surprisingly large box size”. eLife 8:e44718

53. Gapsys V, de Groot BL. 2020. On the importance of statistics in molecular simulations for thermody-
namics, kinetics and simulation box size. eLife 9:e57589

54. Genheden S, Ryde U. 2012. Will molecular dynamics simulations of proteins ever reach equilibrium?
Phys. Chem. Chem. Phys. 14(24):8662–77

55. Gniewek P, Kolinski A, Jernigan RL, Kloczkowski A. 2012. How noise in force fields can affect the
structural refinement of protein models? Proteins 80(2):335–41

56. Grigoryev SA, Bascom G, Buckwalter JM, Schubert MB,Woodcock CL, Schlick T. 2016. Hierarchical
looping of zigzag nucleosome chains in metaphase chromosomes. PNAS 113(5):1238–43

57. Gunsteren WFV. 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Zürich:
Biomos

58. GuvenchO,MacKerell AD Jr. 2009.Computational fragment-based binding site identification by ligand
competitive saturation. PLOS Comput. Biol. 5(7):e1000435

59. Haghighatlari M,Hachmann J. 2019. Advances of machine learning in molecular modeling and simula-
tion. Curr. Opin. Chem. Eng. 23:51–57

www.annualreviews.org • Biomolecular Modeling and Simulation 295

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



60. Halgren TA. 1996.Merck molecular force field. I. Basis, form, scope, parameterization, and performance
of MMFF94. J. Comput. Chem. 17(5–6):490–519

61. Hallberg ZF, Su Y, Kitto RZ, Hammond MC. 2017. Engineering and in vivo applications of ri-
boswitches. Annu. Rev. Biochem. 86:515–39

62. Hamp T, Rost B. 2015. More challenges for machine-learning protein interactions. Bioinformatics
31(10):1521–25

63. He X, Lopes PEM,MacKerell AD. 2013. Polarizable empirical force field for acyclic polyalcohols based
on the classical Drude oscillator. Biopolymers 99(10):724–38

64. Hsieh T-HS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, et al. 2020. Resolving the 3D land-
scape of transcription-linked mammalian chromatin folding.Mol. Cell 78(3):539–53.e8

65. HuH,LiuH.2013.Pitfall in quantummechanical/molecularmechanicalmolecular dynamics simulation
of small solutes in solution. J. Phys. Chem. B 117(21):6505–11

66. Huang P-S, Boyken SE, Baker D. 2016. The coming of age of de novo protein design. Nature
537(7620):320–27

67. Huang X, Pearce R, Zhang Y. 2020. De novo design of protein peptides to block association of the
SARS-CoV-2 spike protein with human ACE2. Aging 12(12):11263–76

68. Inakollu VSS, Geerke DP, Rowley CN, Yu H. 2020. Polarisable force fields: What do they add in
biomolecular simulations? Curr. Opin. Struct. Biol. 61:182–90

69. Irobalieva RN, Fogg JM, Catanese DJ Jr., Sutthibutpong T, Chen M, et al. 2015. Structural diversity of
supercoiled DNA.Nat. Commun. 6:8440

70. Izrailev S, Crofts AR, Berry EA, Schulten K. 1999. Steered molecular dynamics simulation of the Rieske
subunit motion in the cytochrome bc1 complex. Biophys. J. 77(4):1753–68

71. Jack A, Levitt M. 1978. Refinement of large structures by simultaneous minimization of energy and R
factor. Acta Crystallogr. A 34(6):931–35

72. Jackson NE, Bowen AS, Antony LW,Webb MA, Vishwanath V, de Pablo JJ. 2019. Electronic structure
at coarse-grained resolutions from supervised machine learning. Sci. Adv. 5(3):eaav1190

73. Jain S, Laederach A, Ramos SBV, Schlick T. 2018. A pipeline for computational design of novel RNA-
like topologies.Nucleic Acids Res. 46(14):7040–51

74. Jain S, Schlick T. 2017. F-rag: generating atomic coordinates from RNA graphs by fragment assembly.
J. Mol. Biol. 429(23):3587–605

75. Jain S, Zhu Q, Paz AS, Schlick T. 2020. Identification of novel RNA design candidates by clustering the
extended RNA-As-Graphs library. Biochim. Biophys. Acta Gen. Subj. 1864(6):129534

76. Jindal G, Slanska K, Kolev V, Damborsky J, Prokop Z, Warshel A. 2019. Exploring the challenges of
computational enzyme design by rebuilding the active site of a dehalogenase. PNAS 116(2):389–94

77. Jing Z, Liu C, Cheng SY, Qi R,Walker BD, et al. 2019. Polarizable force fields for biomolecular simu-
lations: recent advances and applications. Annu. Rev. Biophys. 48:371–94

78. Jing Z, Liu C, Qi R, Ren P. 2018. Many-body effect determines the selectivity for Ca2+ and Mg2+ in
proteins. PNAS 115(32):E7495–501

79. Jing Z,Qi R,Liu C,Ren P. 2017. Study of interactions betweenmetal ions and proteinmodel compounds
by energy decomposition analyses and the AMOEBA force field. J. Chem. Phys. 147(16):161733

80. Johnson GT,Goodsell DS, Autin L, Forli S, SannerMF,Olson AJ. 2014. 3Dmolecular models of whole
HIV-1 virions generated with cellPACK. Faraday Discuss. 169:23–44

81. JorgensenWL,Madura JD, Swenson CJ. 1984. Optimized intermolecular potential functions for liquid
hydrocarbons. J. Am. Chem. Soc. 106(22):6638–46

82. Jumper J, Tunyasuvunakool K, Kohlim P, Hassabis D, Team A. 2020. Computational predictions of pro-
tein structures associated with COVID-19. Rep., DeepMind, London. https://deepmind.com/research/
open-source/computational-predictions-of-protein-structures-associated-with-COVID-19

83. Jung J,NishimaW,Daniels M, BascomG,Kobayashi C, et al. 2019. Scaling molecular dynamics beyond
100,000 processor cores for large-scale biophysical simulations. J. Comput. Chem. 40(21):1919–30

84. Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P. 2014. Multiplexed 3D cellular
super-resolution imaging with DNA-PAINT and Exchange-PAINT.Nat. Methods 11:313–18

85. Karplus M,Lavery R. 2014. Significance of molecular dynamics simulations for life sciences. Isr. J. Chem.
54(8-9):1042–51

296 Schlick et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19


86. Khabiri M, Freddolino PL. 2017. Deficiencies in molecular dynamics simulation-based prediction of
protein–DNA binding free energy landscapes. J. Phys. Chem. B 121(20):5151–61

87. Khafizov K, Perez C, Koshy C, Quick M, Fendler K, et al. 2012. Investigation of the sodium-binding
sites in the sodium-coupled betaine transporter BetP. PNAS 109(44):E3035–44

88. Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, et al. 2018. Single-molecule FRET reveals
multiscale chromatin dynamics modulated by HP1α.Nat. Commun. 9(1):235

89. Kinana AD, Vargiu AV, Nikaido H. 2016. Effect of site-directed mutations in multidrug efflux pump
AcrB examined by quantitative efflux assays. Biochem. Biophys. Res. Commun. 480(4):552–57

90. Koepnick B, Flatten J, Husain T, Ford A, Silva D-A, et al. 2019. De novo protein design by citizen
scientists.Nature 570(7761):390–94

91. Krepl M,Havrila M, Stadlbauer P, Banas P,OtyepkaM, et al. 2015.Can we execute stable microsecond-
scale atomistic simulations of protein–RNA complexes? J. Chem. Theory Comput. 11(3):1220–43

92. Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, et al. 2020. Ultrastructural details of
mammalian chromosome architecture.Mol. Cell 78(3):554–65.e7

93. Kryshtafovych A, Monastyrskyy B, Fidelis K, Moult J, Schwede T, Tramontano A. 2018. Evaluation of
the template-based modeling in CASP12. Proteins 86(Suppl. 1):321–34

94. Kryshtafovych A,SchwedeT,TopfM,Fidelis K,Moult J. 2019.Critical assessment ofmethods of protein
structure prediction (CASP)—round XIII. Proteins 87(12):1011–20

95. Kührová P, Best RB, Bottaro S, Bussi G, Šponer J, et al. 2016. Computer folding of RNA tetraloops:
identification of key force field deficiencies. J. Chem. Theory Comput. 12(9):4534–48

96. Lankaš F, Lavery R, Maddocks JH. 2006. Kinking occurs during molecular dynamics simulations of
small DNA minicircles. Structure 14(10):1527–34

97. Latorraca NR, Venkatakrishnan AJ, Dror RO. 2017. GPCR dynamics: structures in motion. Chem. Rev.
117(1):139–55

98. Lee J, Kladwang W, Lee M, Cantu D, Azizyan M, et al. 2014. RNA design rules from a massive open
laboratory. PNAS 111(6):2122–27

99. Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, et al. 2018. Experiment
and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase
product outcome. ACS Catal. 8(5):3780–91

100. Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, et al. 2020. Macromolecular modeling
and design in Rosetta: recent methods and frameworks.Nat. Methods 17(7):665–80

101. Lemkul JA,MacKerell AD. 2018. Polarizable force field for RNA based on the classical Drude oscillator.
J. Comput. Chem. 39(32):2624–46

102. Lemkul JA, Savelyev A,MacKerell AD Jr. 2014. Induced polarization influences the fundamental forces
in DNA base flipping. J. Phys. Chem. Lett. 5(12):2077–83

103. Lensink MF, Velankar S, Wodak SJ. 2017. Modeling protein-protein and protein-peptide complexes:
CAPRI 6th edition. Proteins 85(3):359–77

104. Leonard AN, Wang E, Monje-Galvan V, Klauda JB. 2019. Developing and testing of lipid force fields
with applications to modeling cellular membranes. Chem. Rev. 119(9):6227–69

105. Liang H, Chen H, Fan K,Wei P, Guo X, et al. 2009. De novo design of a beta alpha beta motif. Angew.
Chem. 48(18):3301–3

106. Lifson S. 1986. Theoretical foundation for the empirical force field method. Gazz. Chim. Ital.
116(12):687–92

107. Lin F-Y, Huang J, Pandey P, Rupakheti C, Li J, et al. 2020. Further optimization and validation of the
classical Drude polarizable protein force field. J. Chem. Theory Comput. 16(5):3221–39

108. Lin F-Y, MacKerell ADJ. 2019. Force fields for small molecules.Methods Mol. Biol. 2022:21–54
109. Lin X, Schafer NP, Lu W, Jin S, Chen X, et al. 2019. Forging tools for refining predicted protein

structures. PNAS 116(19):9400–9
110. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. 2011. How fast-folding proteins fold. Science

334(6055):517–20
111. Liu C, Perilla JR, Ning J, Lu M, Hou G, et al. 2016. Cyclophilin A stabilizes the HIV-1 capsid through

a novel non-canonical binding site.Nat. Commun. 7:10714

www.annualreviews.org • Biomolecular Modeling and Simulation 297

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



112. Liu S, Liu C, Deng L. 2018. Machine learning approaches for protein-protein interaction hot spot
prediction: progress and comparative assessment.Molecules 23(10):2535

113. Loco D, Lagardère L, Cisneros GA, Scalmani G, Frisch M, et al. 2019. Towards large scale hybrid
QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem. Sci.
10(30):7200–11

114. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. 2016. Deeptox: toxicity prediction using deep
learning. Front. Environ. Sci. 3:80

115. McCammon JA, Gelin BR, Karplus M. 1977. Dynamics of folded proteins.Nature 267(5612):585–90
116. Melcr J, Piquemal J-P. 2019. Accurate biomolecular simulations account for electronic polarization.

Front. Mol. Biosci. 6:143
117. Meng G, Tariq M, Jain S, Elmetwaly S, Schlick T. 2019. RAG-Web: RNA structure prediction/design

using RNA-As-Graphs. Bioinformatics 36(2):647–48
118. Mezei M. 2017. Rescore protein–protein docked ensembles with an interface contact statistics. Proteins

85(2):235–41
119. Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ, et al. 2017. RNA-Puzzles Round III: 3D RNA

structure prediction of five riboswitches and one ribozyme. RNA 23(5):655–72
120. Miao Z, Adamiak RW, Blanchet M-F, Boniecki M, Bujnicki JM, et al. 2015. RNA-Puzzles Round II: as-

sessment of RNA structure prediction programs applied to three large RNA structures.RNA 21(6):1066–
84

121. Miao Y, Goldfeld DA, Moo EV, Sexton PM, Christopoulos A, et al. 2016. Accelerated structure-based
design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. PNAS
113(38):E5675–84

122. Miao Y, Huang Y-M, Walker RC, McCammon JA, Chang C-EA. 2018. Ligand binding pathways and
conformational transitions of the HIV protease. Biochemistry 57(9):1533–41

123. Mitchell JS, Laughton CA,Harris SA. 2011. Atomistic simulations reveal bubbles, kinks and wrinkles in
supercoiled DNA.Nucleic Acids Res. 39(9):3928–38

124. Mlýnský V, Banás P, Hollas D, Réblová K,Walter NG, et al. 2010. Extensive molecular dynamics simu-
lations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal struc-
tures of hairpin ribozyme. J. Phys. Chem. B 114(19):6642–52

125. Moult J, Pedersen JT, Judson R, Fidelis K. 1995. A large-scale experiment to assess protein structure
prediction methods. Proteins 23(3):2–4

126. Munos B. 2009.Lessons from 60 years of pharmaceutical innovation.Nat.Rev.DrugDiscov.8(12):959–68
127. Neale C, Pomès R. 2016. Sampling errors in free energy simulations of small molecules in lipid bilayers.

Biochim. Biophys. Acta Biomembranes 1858(10):2539–48
128. Neidigh JW, Fesinmeyer RM, Andersen NH. 2002. Designing a 20-residue protein. Nat. Struct. Mol.

Biol. 9(6):425–30
129. Némethy G, Scheraga HA. 1965. Theoretical determination of sterically allowed conformations of a

polypeptide chain by a computer method. Biopolymers 3(2):155–84
130. NgoVA,Fanning JK,Noskov SY. 2019.Comparative analysis of protein hydration fromMD simulations

with additive and polarizable force fields. Adv. Theory Simul. 2(2):1800106
131. Nguyen K, Whitford PC. 2016. Steric interactions lead to collective tilting motion in the ribosome

during mRNA–tRNA translocation.Nat. Commun. 7:10586
132. Noé F,Tkatchenko A,Müller K-R,Clementi C. 2020.Machine learning formolecular simulation.Annu.

Rev. Phys. Chem. 71:361–90
133. Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. 2014. Lateral opening and exit pore for-

mation are required for BamA function. Structure 22(7):1055–62
134. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, et al. 2013. Structural insight into the biogen-

esis of β-barrel membrane proteins.Nature 501(7467):385–90
135. Oliveira ASF, Edsall CJ, Woods CJ, Bates P, Nunez GV, et al. 2019. A general mechanism for signal

propagation in the nicotinic acetylcholine receptor family. J. Am. Chem. Soc. 141(51):19953–58
136. Olson WK, Colasanti AV, Czapla L, Zheng G. 2008. Insights into the sequence-dependent macro-

molecular properties of DNA from base-pair level modeling: coarse-graining of condensed phase and

298 Schlick et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



biomolecular systems. In Coarse-Graining of Condensed Phase and Biomolecular Systems, ed. GA Voth,
pp. 205–23. Boca Raton, FL: CRC Press

137. Ostmeyer J, Chakrapani S, Pan AC, Perozo E, Roux B. 2013. Recovery from slow inactivation in K+

channels is controlled by water molecules.Nature 501(7465):121–24
138. Pandey P, Mallajosyula SS. 2016. Influence of polarization on carbohydrate hydration: a comparative

study using additive and polarizable force fields. J. Phys. Chem. B 120(27):6621–33
139. Patel DS, He X, MacKerell AD. 2015. Polarizable empirical force field for hexopyranose monosaccha-

rides based on the classical Drude oscillator. J. Phys. Chem. B 119(3):637–52
140. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, et al. 1995. AMBER, a package of

computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and
free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys.
Commun. 91(1):1–41

141. Pérez A, Luque FJ, Orozco M. 2007. Dynamics of B-DNA on the microsecond time scale. J. Am. Chem.
Soc. 129(47):14739–45

142. Perez C, Faust B, Mehdipour AR, Francesconi KA, Forrest LR, Ziegler C. 2014. Substrate-bound
outward-open state of the betaine transporter BetP provides insights into Na+ coupling.Nat. Commun.
5(1):4231

143. Perilla JR, Schulten K. 2017. Physical properties of the HIV-1 capsid from all-atommolecular dynamics
simulations.Nat. Commun. 8:15959

144. Perthold JW,Oostenbrink C. 2017. Simulation of reversible protein–protein binding and calculation of
binding free energies using perturbed distance restraints. J. Chem. Theory Comput. 13(11):5697–708

145. Phillips JC, Braun R,WangW,Gumbart J, Tajkhorshid E, et al. 2005. Scalable molecular dynamics with
NAMD. J. Comput. Chem. 26(16):1781–802

146. Piana S, Donchev AG, Robustelli P, Shaw DE. 2015. Water dispersion interactions strongly influence
simulated structural properties of disordered protein states. J. Phys. Chem. B 119(16):5113–23

147. Piana S, Klepeis JL, Shaw DE. 2014. Assessing the accuracy of physical models used in protein-folding
simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol.
24:98–105

148. Piana S, Shaw DE. 2018. Atomic-level description of protein folding inside the GroEL cavity. J. Phys.
Chem. B 122(49):11440–49

149. Deleted in proof
150. Poma AB, Guzman HV, Li MS, Theodorakis PE. 2019. Mechanical and thermodynamic properties

of αβ42, αβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies.
Beilstein J. Nanotechnol. 10:500–13

151. Portillo-Ledesma S, Schlick T. 2020. Bridging chromatin structure and function over a range of exper-
imental and spatial temporal scales by molecular modeling.WIREs Comput. Mol. Sci. 10:e1434

152. Prigozhin MB, Zhang Y, Schulten K, Gruebele M, Pogorelov TV. 2019. Fast pressure-jump all-
atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. PNAS
116(12):5356–61

153. Pyle AM, Schlick T. 2016.Challenges in RNA structural modeling and design. J.Mol. Biol. 428(5A):733–
35

154. Rahman A, Stillinger FH. 1971.Molecular dynamics study of liquid water. J. Chem. Phys. 55(7):3336–59
155. Ramis R, Ortega-Castro J, Casasnovas R,Mariño L, Vilanova B, et al. 2019. A coarse-grained molecular

dynamics approach to the study of the intrinsically disordered protein α-synuclein. J. Chem. Inf. Model.
59(4):1458–71

156. Rao SSP, Huang S-C, Glenn St. Hilaire B, Engreitz JM, Perez EM, et al. 2017. Cohesin loss eliminates
all loop domains. Cell 171(2):305–20

157. Rapp AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. 1992. UFF, a full periodic table force field
for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25):10024–35

158. Reddy T, Shorthouse D, Parton DL, Jefferys E, Fowler PW, et al. 2015.Nothing to sneeze at: a dynamic
and integrative computational model of an influenza A virion. Structure 23(3):584–97

159. Robustelli P, Piana S, Shaw DE. 2018. Developing a molecular dynamics force field for both folded and
disordered protein states. PNAS 115(21):E4758–66

www.annualreviews.org • Biomolecular Modeling and Simulation 299

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



160. Ruggerone P,Murakami S, Pos KM, Vargiu AV. 2013. RND efflux pumps: structural information trans-
lated into function and inhibition mechanisms. Curr. Top. Med. Chem. 13(24):3079–100

161. Rothemund PWK. 2006. Folding DNA to create nanoscale shapes and patterns.Nature 440(7082):297–
302

162. Savelyev A, MacKerell AD. 2015. Competition among Li+, Na+, K+, and Rb+ monovalent ions for
DNA in molecular dynamics simulations using the additive CHARMM36 and Drude polarizable force
fields. J. Phys. Chem. B 119(12):4428–40

163. Schalch T, Duda S, Sargent DF, Richmond TJ. 2005. X-ray structure of a tetranucleosome and its im-
plications for the chromatin fibre.Nature 436(7047):138–41

164. Scheraga HA. 2011. Respice, Adspice, and Prospice. Annu. Rev. Biophys. 40:1–39
165. Schlick T. 2009.Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale

conformational changes in biomolecules. F1000 Biol. Rep. 1:51
166. Schlick T. 2009. Monte Carlo, harmonic approximation, and coarse-graining approaches for enhanced

sampling of biomolecular structure. F1000 Biol. Rep. 1:48
167. Schlick T. 2010.Molecular Modeling and Simulation: An Interdisciplinary Guide. Berlin: Springer. 2nd ed.
168. Schlick T. 2013. The 2013 Nobel Prize in Chemistry celebrates computations in chemistry and biology.

SIAM News 46:1–4
169. Schlick T. 2018. Adventures with RNA graphs.Methods 143:16–33
170. Schlick T. 2020. Eight suggestions for future leaders of science and technology. Biophysicist 1(1):1–5
171. Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. 2011. Biomolecular modeling and

simulation: a field coming of age. Q. Rev. Biophys. 44(2):191–228
172. Schlick T, Portillo-Ledesma S. 2020. Biomolecular modeling thrives in the age of technology. Nat.

Comput. Sci. In press
173. Schlick T,Pyle AM.2017.Opportunities and challenges in RNA structural modeling and design.Biophys.

J. 113(2):225–34
174. Schlick T, Zhu Q, Jain S, Yan S. 2021. Structure-altering mutations of the SARS-CoV-2 frameshifting

RNA element. Biophys. J. 119:1–14
175. Seeman NC. 1982. Nucleic acid junctions and lattices. J. Theor. Biol. 99(2):237–47
176. Seeman NC, Sleiman HF. 2017. DNA nanotechnology.Nat. Rev. Mater. 3:17068
177. SenguptaD,Chattopadhyay A.2015.Molecular dynamics simulations ofGPCR–cholesterol interaction:

an emerging paradigm. Biochim. Biophys. Acta Biomembr. 1848(9):1775–82
178. Senior AW,Evans R, Jumper J,Kirkpatrick J, Sifre L, et al. 2019. Protein structure prediction using mul-

tiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13).
Proteins 87(12):1141–48

179. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, et al. 2020. Improved protein structure prediction
using potentials from deep learning.Nature 577(7792):706–10

180. Shaw DE, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, et al. 2008. Anton, a special-purpose
machine for molecular dynamics simulation. Commun. ACM 51(7):91–97

181. ShawDE,Grossman JP,Bank JA,Batson B,Butts JA, et al. 2014.Anton 2: raising the bar for performance
and programmability in a special-purpose molecular dynamics supercomputer. In SC14: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 41–53. Piscataway, NJ:
IEEE

182. ShawDE,Maragakis P, Lindorff-Larsen K, Piana S,Dror RO, et al. 2010. Atomic-level characterization
of the structural dynamics of proteins. Science 330(6002):341–46

183. Sirur A, De Sancho D, Best RB. 2016. Markov state models of protein misfolding. J. Chem. Phys.
144(7):075101

184. Smith MD, Smith JC. 2020. Repurposing therapeutics for COVID-19: supercomputer-based dock-
ing to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRxiv
11871402. https://doi.org/10.26434.chemrxiv.11871402.v4

185. SongD,WangW,YeW, Ji D,Luo R,ChenH-F. 2017. ff14IDPs force field improving the conformation
sampling of intrinsically disordered proteins. Chem. Biol. Drug Des. 89(1):5–15

186. Song F, Chen P, Sun D,Wang M, Dong L, et al. 2014. Cryo-EM study of the chromatin fiber reveals a
double helix twisted by tetranucleosomal units. Science 344(6182):376–80

300 Schlick et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.26434.chemrxiv.11871402.v4


187. Song X, Jensen MØ, Jogini V, Stein RA, Lee C-H, et al. 2018. Mechanism of NMDA receptor channel
block by MK-801 and memantine.Nature 556(7702):515–19

188. Stillinger FH, Rahman A. 1974. Improved simulation of liquid water by molecular dynamics. J. Chem.
Phys. 60(4):1545–57

189. Stranges PB,KuhlmanB.2013.A comparison of successful and failed protein interface designs highlights
the challenges of designing buried hydrogen bonds. Protein Sci. 22(1):74–82

190. Sun D, Forsman J, Woodward CE. 2015. Evaluating force fields for the computational prediction of
ionized arginine and lysine side-chains partitioning into lipid bilayers and octanol. J. Chem. Theory Comp.
11(4):1775–91

191. SunH.1998.COMPASS: an ab initio force-field optimized for condensed-phase applications—overview
with details on alkane and benzene compounds. J. Phys. Chem. B 102(38):7338–64

192. Tautermann CS, Seeliger D, Kriegl JM. 2015.What can we learn from molecular dynamics simulations
for GPCR drug design? Comput. Struct. Biotechnol. J. 13:111–21

193. Vargiu AV, Collu F, Schulz R, Pos KM, Zacharias M, et al. 2011. Effect of the F610A mutation on sub-
strate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations.
J. Am. Chem. Soc. 133(28):10704–7

194. Vargiu AV, Nikaido H. 2012. Multidrug binding properties of the AcrB efflux pump characterized by
molecular dynamics simulations. PNAS 109(50):20637–42

195. Vendruscolo M, Dobson CM. 2011. Protein dynamics: Moore’s law in molecular biology. Curr. Biol.
21(2):R68–70

196. Walker B, Jing Z, Ren P. 2020. Molecular dynamics free energy simulations of ATP:Mg2+ and
ADP:Mg2+ using the polarisable force field AMOEBA. Mol. Simul. https://doi.org/10.1080/
08927022.2020.1725003

197. Wang A, Zhang Z, Li G. 2018. Higher accuracy achieved in the simulations of protein structure refine-
ment, protein folding, and intrinsically disordered proteins using polarizable force fields. J. Phys. Chem.
Lett. 9(24):7110–16

198. Wang Q, Irobalieva RN,ChiuW, Schmid MF, Fogg JM, et al. 2017. Influence of DNA sequence on the
structure of minicircles under torsional stress.Nucleic Acids Res. 45(13):7633–42

199. Warshel A, Levitt M. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric
stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103(2):227–49

200. Wasserman MR, Alejo JL, Altman RB, Blanchard SC. 2016. Multiperspective smFRET reveals rate-
determining late intermediates of ribosomal translocation.Nat. Struct. Mol. Biol. 23(4):333–41

201. Williford J-M, Santos JL, Shyam R, Mao H-Q. 2015. Shape control in engineering of polymeric
nanoparticles for therapeutic delivery. Biomater. Sci. 3:894–907

202. Woys AM, Almeida AM, Wang L, Chiu C-C, McGovern M, et al. 2012. Parallel β-sheet vibrational
couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark
for the interpretation of amyloid and protein infrared spectra. J. Am. Chem. Soc. 134(46):19118–28

203. Yaseen A, Nijim M, Williams B, Qian L, Li M, et al. 2016. FLEXc: protein flexibility prediction us-
ing context-based statistics, predicted structural features, and sequence information. BMC Bioinformat.
17(8):281

204. Young MA, Beveridge DL. 1998. Molecular dynamics simulations of an oligonucleotide duplex with
adenine tracts phased by a full helix turn. J. Mol. Biol. 281(4):675–87

205. Yu K, Jiang T, Cui Y, Tajkhorshid E, Hartzell HC. 2019. A network of phosphatidylinositol 4,5-
bisphosphate binding sites regulates gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A).
PNAS 116(40):19952–62

206. Yu W, Lopes PEM, Roux B, MacKerell AD. 2013. Six-site polarizable model of water based on the
classical Drude oscillator. J. Chem. Phys. 138(3):034508

207. Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo J, et al. 2021. Histone H1 loss drives lym-
phoma by disrupting 3D chromatin architecture.Nature 589(7841):299–305

208. Zhang C, Bell D,Harger M,Ren P. 2017. Polarizable multipole-based force field for aromatic molecules
and nucleobases. J. Chem. Theory Comput. 13(2):666–78

209. Zhang C, Lu C, Jing Z,Wu C, Piquemal J-P, et al. 2018. AMOEBA polarizable atomic multipole force
field for nucleic acids. J. Chem. Theory Comp. 14(4):2084–108

www.annualreviews.org • Biomolecular Modeling and Simulation 301

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1080/08927022.2020.1725003


BB50_FrontMatter ARjats.cls April 11, 2021 12:35

Annual Review of
Biophysics

Volume 50, 2021

Contents

Review of COVID-19 Antibody Therapies
Jiahui Chen, Kaifu Gao, Rui Wang, Duc Duy Nguyen, and Guo-Wei Wei � � � � � � � � � � � � � � � � 1

The Mechanosensory Transduction Machinery in Inner Ear Hair Cells
Wang Zheng and Jeffrey R. Holt � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �31

Structure of Phycobilisomes
Sen-Fang Sui � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �53

Biophysics of Chromatin Remodeling
Ilana M. Nodelman and Gregory D. Bowman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �73

Structures and Functions of Chromatin Fibers
Ping Chen, Wei Li, and Guohong Li � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �95

From Bench to Keyboard and Back Again: A Brief History of Lambda
Phage Modeling
Michael G. Cortes, Yiruo Lin, Lanying Zeng, and Gábor Balázsi � � � � � � � � � � � � � � � � � � � � � � � � 117

Recent Developments in the Field of Intrinsically Disordered Proteins:
Intrinsic Disorder–Based Emergence in Cellular Biology in Light of
the Physiological and Pathological Liquid–Liquid Phase Transitions
Vladimir N. Uversky � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 135

Biophysics of Notch Signaling
David Sprinzak and Stephen C. Blacklow � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 157

Bayesian Inference: The Comprehensive Approach to Analyzing
Single-Molecule Experiments
Colin D. Kinz-Thompson, Korak Kumar Ray, and Ruben L. Gonzalez Jr. � � � � � � � � � � � � � � 191

Learning to Model G-Quadruplexes: Current Methods and
Perspectives
Iker Ortiz de Luzuriaga, Xabier Lopez, and Adrià Gil � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 209

Analysis of Tandem Repeat Protein Folding Using
Nearest-Neighbor Models
Mark Petersen and Doug Barrick � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 245

v

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BB50_FrontMatter ARjats.cls April 11, 2021 12:35

Biomolecular Modeling and Simulation: A Prospering
Multidisciplinary Field
Tamar Schlick, Stephanie Portillo-Ledesma, Christopher G. Myers,
Lauren Beljak, Justin Chen, Sami Dakhel, Daniel Darling, Sayak Ghosh,
Joseph Hall, Mikaeel Jan, Emily Liang, Sera Saju, Mackenzie Vohr,
Chris Wu, Yifan Xu, and Eva Xue � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 267

Biomolecular Systems Engineering: Unlocking the Potential of
Engineered Allostery via the Lactose Repressor Topology
Thomas M. Groseclose, Ronald E. Rondon, Ashley N. Hersey, Prasaad T. Milner,
Dowan Kim, Fumin Zhang, Matthew J. Realff, and Corey J. Wilson � � � � � � � � � � � � � � � � 303

Directed Evolution of Microbial Communities
Álvaro Sánchez, Jean C.C. Vila, Chang-Yu Chang, Juan Diaz-Colunga,
Sylvie Estrela, and María Rebolleda-Gomez � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 323

The Molecular Basis for Life in Extreme Environments
Nozomi Ando, Blanca Barquera, Douglas H. Bartlett, Eric Boyd,
Audrey A. Burnim, Amanda S. Byer, Daniel Colman, Richard E. Gillilan,
Martin Gruebele, George Makhatadze, Catherine A. Royer, Everett Shock,
A. Joshua Wand, and Maxwell B. Watkins � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 343

The Sliding Filament Theory Since Andrew Huxley: Multiscale and
Multidisciplinary Muscle Research
Joseph D. Powers, Sage A. Malingen, Michael Regnier, and Thomas L. Daniel � � � � � � � � � 373

How Physical Interactions Shape Bacterial Biofilms
Berenike Maier � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 401

Cutting-Edge Single-Molecule Technologies Unveil New Mechanics
in Cellular Biochemistry
Souradeep Banerjee, Soham Chakraborty, Abhijit Sreepada, Devshuvam Banerji,
Shashwat Goyal, Yajushi Khurana, and Shubhasis Haldar � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 419

Measuring Absolute Membrane Potential Across Space and Time
Julia R. Lazzari-Dean, Anneliese M.M. Gest, and Evan W. Miller � � � � � � � � � � � � � � � � � � � � � 447

Advancing Biophysics Using DNA Origami
Wouter Engelen and Hendrik Dietz � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 469

The Contribution of Biophysics and Structural Biology to Current
Advances in COVID-19
Francisco J. Barrantes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 493

Protein Reconstitution Inside Giant Unilamellar Vesicles
Thomas Litschel and Petra Schwille � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 525

Structure and Mechanics of Dynein Motors
John T. Canty, Ruensern Tan, Emre Kusakci, Jonathan Fernandes,
and Ahmet Yildiz � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 549

vi Contents

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BB50_FrontMatter ARjats.cls April 11, 2021 12:35

The Phasor Plot: A Universal Circle to Advance Fluorescence Lifetime
Analysis and Interpretation
Leonel Malacrida, Suman Ranjit, David M. Jameson, and Enrico Gratton � � � � � � � � � � � � � 575

Molecular Force Measurement with Tension Sensors
Lisa S. Fischer, Srishti Rangarajan, Tanmay Sadhanasatish, and Carsten Grashoff � � � � � 595

Indexes

Cumulative Index of Contributing Authors, Volumes 46–50 � � � � � � � � � � � � � � � � � � � � � � � � � � � 617

Errata

An online log of corrections to Annual Review of Biophysics articles may be found at
http://www.annualreviews.org/errata/biophys

Contents vii

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:2

67
-3

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 -
 B

ob
st

 L
ib

ra
ry

 o
n 

05
/1

2/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 


