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Abstract 

The str uct ure and dynamics of the eukary otic genome are intimately link ed to gene regulation and transcriptional activity. Man y chromosome 
conformation capture experiments like Hi-C have been developed to detect genome-wide contact frequencies and quantify loop / compartment 
str uct ures for different cellular contexts and time-dependent processes. However, a full understanding of these events requires explicit descrip- 
tions of representative chromatin and chromosome configurations. With the exponentially growing amount of data from Hi-C e xperiments, man y 
methods for deriving 3D str uct ures from contact frequency data ha v e been de v eloped. Yet, most reconstruction methods use polymer models 
with low resolution to predict overall genome str uct ure. Here we present a Brownian Dynamics ( BD ) approach termed Hi-BDiSCO for producing 
3D genome str uct ures from Hi-C and Micro-C data using our mesoscale-resolution chromatin model based on the Discrete Surface Charge 
Optimization ( DiSCO ) model. Our approach integrates reconstruction with chromatin simulations at nucleosome resolution with appropriate bio- 
ph y sical parameters. Follo wing a description of our protocol, we present applications to the NXN, H OX C, H OXA and Fbn2 mouse genes ranging 
in size from 50 to 100 kb. Such nucleosome-resolution genome str uct ures pa v e the w a y f or pursuing man y biomedical applications related to 
the epigenomic regulation of chromatin and control of human disease. 
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he 3D architecture of the genome is critical for gene expres-
ion ( 1 ,2 ) , regulation ( 3 ,4 ) , transcription ( 5 ) and other funda-
ental biological functions. To understand the 3D organiza-

ion of the eukaryotic genome, much progress has been real-
zed on both experimental and computational fronts over the
ast decade. 
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As described in a recent review ( 6 ) , chromosome confor-
mation capture ( 3C ) methods have risen exponentially since
2002 for genome interrogation. The 3C method developed
by Dekker et al. ( 7 ) was followed by higher resolution tech-
niques such as 4C ( 8 ) , 5C ( 9 ) , Hi-C ( 10 ) , Micro-C ( 11 ) and
RCMC ( 12 ) . Today, Hi-C-like experiments with resolution
as high as 50 bp ( base pairs ) are feasible ( 12 ) , with interac-
tions across the entire genome detectable. In addition, single-
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cell Hi-C techniques ( 13 ,14 ) measure 3D structures of in-
dividual genomes directly and provide data for the analysis
of chromatin folding in rare cell types like stem ( 15 ) and
totipotent ( 16 ) cells, thereby contributing to a better under-
standing of basic mechanisms in development, differentia-
tion and human disease. For example, single-cell Hi-C has
been applied to examine changes in genome organization dur-
ing the cell cycle ( 17 ,18 ) , cell-type-specific chromosomal ar-
chitecture ( 19 ) , and structure-expression interactions ( 20 ) . 

Methods for predicting and reconstructing 3D genome
structures from such Hi-C data have also naturally
emerged ( 21–23 ) . Physical polymer models, with beads
representing bp to kbp, are commonly used to reconstruct the
whole genome or sub elements, like genes, TADs. The general
workflow for Hi-C reconstruction of the polymer model is
described in our recent review ( 23 ) . In brief, the input data in-
clude Hi-C or single-cell Hi-C maps with possibly additional
information, such as FISH and Chip-seq data. Correction
of these data may be performed by data normalization ( 24 )
or probability-based methods ( 25 ) that treat the problem
as Bayesian inference or maximum likelihood problem, so
that uncertainties in the experimental Hi-C data can be
interpreted in probabilistic terms. The conversion of Hi-C
data can be made into distances ( 26 ,27 ) or contacts ( 28–30 ) .
Distance-based methods usually convert the frequencies
between two loci i and j ( f ij ) to spatial 3D distances between
those loci ( d ij ) by an inverse relationship d i j ∝ 1 / f αi j , where α
is a parameter related to the genomic distance and resolution
of the Hi-C map. Contact-based methods use Hi-C contacts
directly as restraints for modeling, such as by adding fictitious
‘bonds’ between loci. A reconstruction model can be based on
an analytical framework or simulations. Finally, the output
structures are categorized by consensus, resampling and
population-based methods ( 31 ) . Consensus methods generate
a single structure from ensemble Hi-C data; resampling meth-
ods generate an ensemble of structures that satisfy distance
data derived from the Hi-C map; and population-based
methods generate a population of individual structures from
ensemble Hi-C data. 

Apart from these physical models, as outlined in the pro-
cess above, statistical models together with machine learning
algorithms ( 32–34 ) also provide insights into various genome
patterns such as relationships between histone modifications,
transcription factor binding, and chromatin interactions. 

When reconstructing 3D genome structures, several chal-
lenging problems arise, including the level of resolution and
usage of artificial constraints. Many polymer reconstruction
models predict coarse polymer chain trajectories. Some ap-
proaches add fictitious constraints ( e.g., specific binders ) to
match Hi-C data without biophysical meaning. 

To address some of these limitations, our Brownian Dynam-
ics ( BD ) based approach incorporates our mesoscale model
for structure refinement to capture the spatial relationship be-
tween nucleosomes and DNA; the resulting structure from BD
reconstruction can be used directly to simulate and further
probe the genome system’s dynamics independently of any
constraints / restraints. 

We illustrate performance on three gene systems, showing
a two-stage approach. The BD stage reproduces the patterns
on the Hi-C maps in minutes for fibers in the size range of
100 kb, and the MC stage resolves clashes and accounts for
histone tails and linker histones without compromising the
contact patterns derived from the original Hi-C map. Recon-
struction from known structures further demonstrates that
Hi-BDiSCO generates biophysically sound fibers. Then we use 
Hi-BDiSCO to reconstruct the HOXA gene and examine the 
role of Pol II pausing in enhancer–promoter interactions. Sim- 
ilarly, we reconstruct the Fbn2 gene to study the effect of co- 
hesin and transcription inhibition on chromatin architecture.
The resulting Hi-BDiSCO folded gene structures at mesoscale 
resolution provide a wealth of mechanistic insights into 3D 

spatial gene structure to probe many biological features and 

processes. 

Materials and methods 

Chromatin mesoscale model 

Our mesoscale chromatin model ( Figure 1 and see recent re- 
views in ( 6 ,35–37 ) ) has coarse grained elements at different 
levels of resolution. The nucleosome cores are treated by a 
Discrete Surface Charge Optimization ( DiSCO ) model ( 38 ) as 
charged disks according to the atomistic core particle. Linker 
DNA, histone tails and linker histones ( LH ) are treated as 
beads. Histone tails and LH can be turned on or off to study 
details at different resolutions. 

We currently consider flexible histone tails ( 39 ) and their 
acetylation ( 40 ,41 ) , two LH variants ( H1E and H1C ) with 

several binding modes ( on- versus off-dyad ) ( 42 ,43 ) , and non- 
uniform linker DNA lengths ( 44 ) , among other features ( 6 ) . 

Parameters for mesoscale model 

Nucleosome positioning 
Nucleosome positions are obtained from MNase-seq data. We 
first use DANPOS ( 45 ) to retrieve the peaks of the MNase-seq 

data, which represent the nucleosome locations. To eliminate 
overlapping nucleosomes, we perform a ‘greedy’ algorithm,
that is, from the first nucleosome, we select the next nucleo- 
some when the coordinates between the two adjacent nucle- 
osome starting positions are at least 166 bp away ( 147 bp of 
nucleosomal DNA plus 19 bp of linker DNA ) . The numbers 
and relative distances ( in bp ) between nucleosomes are then 

used to build our mesoscale model. 

Tail acetylation 

Tail acetylation regions are obtained from H3K27ac Chip-seq 

data. The peaks of H3K27ac Chip-seq data are calculated us- 
ing MACS ( 46 ) , and the overlapping with their peaks genomic 
coordinates are used to identify nucleosomes in these regions.

Linker Histone ( LH ) density 
The linker histone ( LH ) density ρ measured as LH per nu- 
cleosome is approximated from experimental Chip-seq mea- 
surements ( GEO accession: GSE46134 ( 47 ) ) . Besides Chip- 
seq, in some cases, we also use the average LH density ob- 
served from experiments ( 48 ) . We first calculate the number 
of nucleosomes that have LH attached ( N C LH ) according to ρ,
N C LH = ρ × N C ( N C 

is the total number of nucleosome cores ) .
We then select N C LH nucleosomes associated with the peaks 
( highest values ) in the Chip-seq data and assign LHs to them.

Examples of annotated mesoscale gene models for HOXA,
HOXC and NXN are shown in Figure 2 . 

Note that although we use a specific setting for nucle- 
osome positions, tail acetylation marks, and LHs, an en- 
semble of fibers with different distributions, as considered 

in ( 49 ) , could also be used. The experimental data sources 
from mESC used for these distributions are summarized in 

Supplementary Table S1 . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
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Figure 1 . Our c hromatin nucleosome-resolution mesoscale model ( 6 , 35–37 ) . A linear 100-nucleosome chromatin fiber at bottom with the enlarged basic 
unit ( chromatosome ) at top, from a side view. The Nucleosome core is represented by the Discrete Surface Charge Optimization ( DiSCO ) model shown 
at right as an irregular surface and 300 distributed charge beads. Histone tails are shown as green ( H3 ) , yellow ( H2A ) , red ( H2B ) and blue ( H4 ) beads. 
Linker histones are shown as orange ( globular head ) and cyan ( C-terminal domain ) beads. Linker DNA units are shown as red beads. 

Figure 2. Examples of annotated gene systems. ( A ) Mesoscale models of HOXA, HOXC and NXN gene systems with different annotated information 
and reconstruction stages. Left: HOXA gene with blue CTCF binding sites after the MC subsequent simulation; middle: HOXC gene with wildtype tails 
as blue beads, acetylated tails as red beads and LH as teal beads, initial random str uct ure; right: NXN gene system with intron DNA in dark green, exon 
DNA in blue and intergenic DNA in red after BD reconstruction. ( B ) DNA linker lengths of HOXA model, plotted against the nucleosome index, 492 
nucleosomes in total obtained from mESC MNase-seq data ( GEO accession: GSM2083105 ) , along with annotated gene locations. 
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Hi-BDiSCO Brownian dynamics simulation and 

Monte Carlo sampling protocol 

Our mesoscale Brownian dynamics (BD) simulation proto-
col was recently developed for CUDA implementation ( 37 ),
demonstrating physically accurate behavior and rapid perfor-
mance that makes feasible the study of chromatin fibers in the
range of kb, or hundreds of nucleosomes. The bottleneck is
the storage requirement for diffusion tensors and force ma-
trices for large systems and the associated Cholesky factor-
ization. For example, ∼100 nucleosomes or 20 kb chromatin
fiber can be simulated with full tail and LH beads, but a 50 kb
fiber would occupy 64 GB memory, too large for the typical
16 GB or 32 GB GPU memory. 

Our mesoscale Monte Carlo (MC) sampling protocol has
proven useful for simulating gene-level ( ∼500 nucleosomes or
100 kb chromatin fiber) systems with full details of histone
tails and LH ( 50 ,51 ). 

Both BD and MC have the total potential energy function
of the model as: 

E(r ) = E S + E B + E T + E tS + E tB + E lhS + E lhB + E V 

+ E C , (1)

where r is the collective position vector of the system; E S , E B ,
E T are the stretching, bending and twisting terms for the linker
DNA and nucleosome core; E tS and E tB are the stretching and
bending terms for histone tails; E lhS and E lhB are the stretch-
ing and bending terms for LH; E V 

and E C 

are the excluded
volume (repulsive term, applied to all particle–particle inter-
actions to avoid close contact) and electrostatic terms for all
beads, respectively. 

The details of our BD and MC protocols can be found
in ( 37 ) and ( 39 , 51 , 52 ). 

Brownian dynamics reconstruction implementation 

The idea of the reconstruction is as follows (see Figure 3 ): 

Hi-C map and initial structures 
We first map intervals between the 2D Hi-C / Micro-C and the
3D mesoscale model in the chromatin system corresponding
to the chromosome coordinates. The contact interaction map
( M × M matrix) from the Hi-C / Micro-C experiment provides
a frequency f ij for each { i , j } genomic contact. From this ex-
perimental map (a Micro-C map in this case), we select the
region of interest (i.e., HOXA shown in Figure 3 Ai)). In our
mesoscale model, each DNA bead represents ∼9 bp region.
Each nucleosome core represents ∼147 bp region (shown
as 16 grey nucleosomal DNA beads in Figure 3 Aii)). The
mesoscale fiber is then evenly partitioned into n regions ac-
cording to the resolution of Micro-C data, as shown in Fig-
ure 3 A. There we select a 1000 bp region for illustration, so
that the Micro-C resolution of 100 bp corresponds to n =
10, or ten 100-bp regions. Based on the chromosome coor-
dinates, we map the regions in the 3D mesoscale chromatin
fiber to the 2D Micro-C data. For example, the 11 beads in
the red circle of the zoomed mesoscale model correspond to
chr6:52197500–52197600, and this region maps to the re-
gion marked with a blue triangle in the Micro-C map. We then
generate a number ( N rep ) of replicas (Figure 3 A) with the same
configurations (nucleosome positioning, Micro-C mapping re-
gions, etc.) and different random initial spatial structures for
the following steps. 
Restraints definition and distribution 

All the Hi-C / Micro-C { f ij } values are then distributed into 

the replicas to reproduce the original contact frequency dis- 
tribution. That is, based on the frequency f ij and the num- 
ber of replicas N rep , we calculate the number of copies onto 

which we assign specific contacts N R i j , a subset of the N rep 

replicas, N R i j = f i j × N rep . As shown in Figure 3 B, the sim- 
plified illustration has f 31 = 0.6 and N rep = 8, so we calcu- 
late N R 31 = f 31 × N rep = 0 . 6 × 8 ≈ 5 . Thus, in this case, we
distribute R 31 contacts into 5 out of the 8 replicas. We deter- 
mine the specific subset of replicas using the random sampling 
method in Python ( random .sample ( population , k )), where the 
population is the number of replicas ( N rep ) and k is the tar- 
get number of restraints ( N R i j ). This will return k elements 
chosen from the population , and the output will differ every 
time. In practice, we start by randomly choosing one element 
from the population , then moving the selected element into a 
vacant replica and selecting another element from the other el- 
ements in population until k elements are selected. As shown 

in Figure 3 B, four restraints R ij are assigned: R 31 is assigned 

to five replicas (1, 2, 4, 7, 8); R 64 is assigned to all eight repli- 
cas; R 83 is assigned to two replicas (3,7); and R 97 is assigned 

to replica 3 only. In practice, all the restraints R ij (for non- 
adjacent i , j ) are assigned to replicas. Clearly, there are infinite 
ways of distributing restraints to reproduce the Hi-C / Micro- 
C maps. This random distribution, one of many possible ways,
has proven reasonable for reproducing 3D structures and re- 
lated experimental contact maps. 

The restraints are modeled as distance based with linear 
force R ij = h m 

( d ij − d 0 ), where h m 

is the stretching constant,
d ij is inter-bead distance corresponding to the regions i and j ,
and d 0 is the target d ij (see parameter selection in the following 
subsections.) Since each partitioned region has multiple DNA 

beads (linker or nucleosomal) in our mesoscale model ( ∼11 

beads for 100 bp resolution Micro-C data), the restraints are 
applied only to the center bead of the region; if the center bead 

is within the nucleosome core, the restraint is applied to the 
core. 

Simulation 

We then perform a simplified mesoscale BD simulation (with 

tail / LH interactions and tail / LH beads omitted) for 100 ns 
using �t = 1ps for 100 000 steps with these restraints in each 

replica to fold the gene fibers. This simplification makes it pos- 
sible to simulate ∼500 nucleosome gene systems by BD and 

quickly fold the system (minutes of computational time). As 
shown in Figure 3 Ci), after the BD simulation, the structures 
fold into condensed configurations. The restraint regions i , j 
in replicas are close to each other (e.g., regions 1 and 3, and 4 

and 6 are close in replica 1 after BD). 
To fully utilize parallel computing with CUDA, we feed the 

restraints as a hash table, and assign N threads, where N is the 
number of restraints. Thus, each thread i only performs one 
calculation for the i th restraint. With the CUDA implementa- 
tion of our BD simulation ( 37 ), which executes the compute- 
intensive computations (diffusion tensor, force, etc.) in paral- 
lel, the chromatin fiber can be quickly folded into a condensed 

structure compatible with the Hi-C / Micro-C data. 
Finally, we perform full-scale nucleosome-resolution 

mesoscale Monte Carlo (MC) simulations ( 39 ,50 ) with re- 
straints released for 10 million steps (Figure 3 C). The MC 
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A B C

D

Figure 3. Hi-BDiSCO reconstruction strategy from Micro-C maps using BD (with artificial values for illustration and N rep = N sim 

= 8). ( A ) i) A Micro-C 

contact map (100 bp resolution) with the HOXA gene region, enlarged in a 1000 bp region (10 × 10 for simplicity). Illustrative values (e.g., f 31 = 0.6) are 
displa y ed to show the frequency of contacts between those regions. ii) Ensemble of fibers: illustrative mesoscale model with the HOXA gene region, 
with enlarged 10 0 0 bp region. In this configuration, each bead represents a ∼9 bp region, with linker DNA beads (red) and nucleosomal DNA beads 
(grey). We evenly partition this fiber into 10 regions (100 bp each) and map the 2D Micro-C data region into the 3D mesoscale chromatin fiber based on 
the chromosome coordinates. ( B ) Set-up of BD simulation from Micro-C data. i) Distribute randomly Micro-C ( f ij ) into replicas to reproduce frequencies. 
Based on the frequency f ij and the number of replicas ( N rep ), we know which restraints are distributed into which replicas. ii) Apply distance restraints 
with linear forces. ( C ) Simulation. i) Perform simplified mesoscale BD with restraints in ( B ) for N sim 

fiber copies. ii) Perform corresponding mesoscale MC 

(with tail / LH interaction) for 10 million steps without restraints. The two replicas of simulated str uct ures are also shown with slightly different overall 
configurations from those in ( C ) i), and with fully histone tail and linker histone details. ( D ) Simple illustration. I. We first generate N rep replicas with 
random initial str uct ures ( N rep = 8). II. Then we distribute restraints to replicas based on the frequencies. III. The N sim 

= 8 str uct ures are folded by 
simplified BD according to the distributed restraints and IV. updated and with tail and LH details by MC. 
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linker histones, as well as uses biophysical parameters to
resolve non-physical contacts resulting from the artificial BD
restraints. 

Distance / force parameter choices 

The stretching force between the beads in our BD simula-
tion ( 37 ) is given by F S i = h (l i − l 0 ) , where h is the stretch-
ing constant, l i is the distance between two beads, and l 0 is
the equilibrium length. For the restraint forces, R ij = h m 

( d ij

− d 0 ), we run simulations with different stretching constants
h m 

and d 0 to experiment with the effect of different force
magnitudes and target equilibrium length. The stretching con-
stant for the connecting DNA beads and nucleosome cores
in our mesoscale model is h = 100 k B T / l 2 0 , where l 0 = 3 nm,
k B is the Boltzmann constant, and T is the temperature. For
the restraints, we have tested both constant and weighted
parameters. 

For the constant parameter, we run simulations with h m 

=
h 
50 , 

h 
20 , 

h 
5 , and h . When the stretching force is strong ( h m 

= h ),
the contacted beads will be pulled together strongly and the
overall result is a very condensed structure ( Supplementary 
Figure S1 ); when the stretching force is weak ( h m 

= 

h 
50 ),

the chromatin fiber folds more smoothly and becomes more
open ( Supplementary Figure S1 ). Both strong and weak force
choices reproduce Micro-C patterns, but strong forces have
more long-range contacts than soft forces. Supplementary 
Figure S2 shows the sedimentation coefficient, packing ra-
tio, volume and radius of gyration of resulting chromatin
configurations obtained with different force choices. As the
force increases, sedimentation and packing ratios are also
higher, and the volume and radius of gyration are lower. For
the target equilibrium length, we run simulations with d 0

= l 0 , 5 × l 0 , 10 × l 0 or d 0 = 3, 15, 30 nm respectively.
Very similar structures result after BD simulation with dif-
ferent d 0 using the same initial structure, and the same re-
straints. Runs with smaller d 0 yield slightly more condensed
systems compared to larger d 0 ( Supplementary Figure S3 ).
In addition, the MC simulation has a greater effect on sys-
tems with larger d 0 , because open structures can move more
freely. 

Following this testing, we chose h m 

= 

h 
20 and d 0 = 3 nm

as default values. Then we run simulations with weighted pa-
rameters based on the distance of the regions (beads). The dis-
tance of the beads is denoted by the difference in the bead
indices, i.e., bead i and bead j have the distance of | j − i |. For
both h m i j and d 0 i j , we applied the weighted function h m i j =
h m 

× | j − i | × α and d 0 i j = d 0 + | j − i | × β, where α and β are
adjustable variables. We analyzed the nucleosome interactions
for an artificial 50-nucleosome fiber with different choice of α
and β, and found that α = 0.01 and β = 0.1 are good choices
for maintaining overall zigzag fibers. 

As a result, the final choice for the stretching parameter is
h m i j = 0 . 05 k B T × | j − i | /l 2 0 and d 0 i j = 3 + 0 . 1 × | j − i | nm. 

Choice of the number of replicas ( N rep ) and the 

number of simulated copies ( N sim 

) 

The experimental Micro-C data are obtained by accumulating
the contacts among millions of cells. To reproduce structures
with biological meaning, the choice of N rep should ideally be
the same as the number of cells used in the experiments. How-
ever, it is computationally prohibitive to run millions of sim- 
ulations. Hence, we use two strategies to assign N rep . 

The first strategy is using a small number (e.g., N rep = 100,
200, etc.) as the number of total replicas, scaling the contact 
frequency ( f ij ) from the experimental Micro-C data to be be- 
tween 0 and 1, and generating N rep = N sim 

copies to assign re- 
straints and run BD simulations. The resulting N sim 

3D struc- 
tures are used to reproduce contact maps to compare to the 
scaled Micro-C maps. 

The second strategy is to use the original experimental 
Micro-C data and set the number of replicas to be the same 
as the number of cells used in the experiment (e.g., N rep = 1 M 

for the Micro-C data we used ( 53 )) for the distribution of the 
restraints. Then we simulate a smaller number of copies (e.g.,
N sim 

= 100 < N rep ) to obtain an ensemble of 3D structures.
The resulting N sim 

3D structures are used to study the real- 
istic biophysical properties. In this case, reproduction of the 
Micro-C map is not possible, because we are omitting many 
contacts by simulating only a portion of the representatives 
of the whole population. The choice of N rep and N sim 

is dic- 
tated computational resources. An optimal choice would be 
N sim 

as close to N rep as possible and N rep around cell size 
number. 

Choice of the chromosome conformation capture 

data 

From a reconstruction point of view, most methods generate 
polymer models with the number of beads the same as the 
number of bins on the Hi-C map. Our mesoscale chromatin 

model has high-resolution particles (9-bp), so it is compatible 
with Micro-C, which can have resolution as high as 100 bp.
Three sets of data are obtained for five gene systems as fol- 
lows: (i–iii) the NXN ( 54 ), HOXC ( 55 ,56 ) and HOXA ( 57 ,58 )
genes in mouse embryonic stem cells (mESC). We focused 

on these three regions for validation purposes using Micro- 
C data from ( 53 ) (GEO accession: GSE130275) with 100 bp 

resolution. (iv) We study the HOXA gene region for the 
enhancer–promoter contact to explore the role of Pol II paus- 
ing and use Micro-C from ( 59 ) (GEO accession: GSE206131) 
at 200 bp resolution. (v) We study the Fbn2 gene region to un- 
derstand cohesin and transcription inhibition roles on chro- 
matin architecture using Region Capture Micro-C (RCMC) 
data from ( 12 ) (GEO accession: GSE207225) at 50 bp 

resolution. 

Model assessment 

Although some efforts have been made to correlate nucle- 
osome resolution modeling with super-resolution ‘immuno- 
OligoSTORM’ images ( 60 ), to date, there are seldom gene- 
level experimental structures to compare with reconstructed 

3D structures. To validate and evaluate the accuracy of our 
method, we calculate the Spearman correlation coefficient 
(SCC) ( 61 ) between the Micro-C map and our reconstructed 

contact map. We calculate the root mean square deviation 

(RMSD) between our reconstructed 3D structures at differ- 
ent stages (before and after MC) or with 3D structures pre- 
dicted from other methods (e.g., HOXC ( 51 ), Supplementary 
Figure S3 ). Finally we calculate chromatin volume concentra- 
tions (CVC = V chrom 

/ 120 nm 

3 ) and compared them with the 
experimental values ( 62 ) in SI. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data


Nucleic Acids Research , 2023 7 

S
S  

t

 

w  

a
 

n  

e  

S  

t

R
R

 

w  

b

R

H

F  

‘  

t  

b  

l  

r  

t  

c  

0  

(  

d  

t  

t  

s  

i  

t
 

t  

t
N  

b  

a  

a  

(

B
p

T  

t  

s  

H  

a  

O  

f  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad1121/7453262 by N

ew
 York U

niversity Libraries user on 28 N
ovem

ber 2023
CC 

CC is a common measure for evaluating the correlation be-
ween two matrices (scaled from –1 to 1), and it is given by: 

SCC = 

∑ n 
i =1 ( rx i − rx )( ry i − ry ) √ ∑ n 

i =1 ( rx i − rx ) 2 
∑ n 

i =1 ( ry i − ry ) 2 
(2)

here rx i and ry i are the rank variables of the two sets of data,
nd rx and ry are the means of rank. 

SCC applies to ranked data, which is useful for non-
ormally distributed variables, and is robust to outliers. ‘Mod-
rate’, ‘Strong’ and ‘Very strong’ correlations correspond to
CC beyond 0.4 (to 0.7), 0.7 (to 0.9) and 0.9 (to 1), respec-
ively. 

MSD 

MSD is given by: 

RMSD = 

√ √ √ √ 

1 

n 

n ∑ 

i =1 

|| v i − w i || 2 (3)

here v and w are two sets of points. We compare structures
ased on the positions of the nucleosome cores. 

esults 

i-BDiSCO method 

ull details of our reconstruction method are described in
MATHERIALS AND METHODS’ and Figure 3 . The essen-
ial ideas are: (i) build the model for the system of interest
y using experimental nucleosome positions, acetylation is-
ands, and LH positions and densities; (ii) select a number of
eplicas N rep (preferably in the order of cells used to produce
he Micro-C data), and scale the Micro-C map based on the
hoice of N rep , so that the contact frequencies ( f ij ) are between
 and 1; (iii) distribute distance restraints derived from the
scaled / original) Micro-C map into these replicas to repro-
uce the experimental information; (iv) perform BD simula-
ions with restraints as added force, without LH and histone
ails, for N sim 

replicas, where N sim 

≤ N rep ; (v) perform MC
imulations with restraints released and histone tails and LH
ncluded to resolve clashes / outliers due to the omitted con-
acts in the simulated sample. 

The resulting ensemble of MC structures is our representa-
ion of the genome structures compatible with the experimen-
al data. To assess the structures where reasonable (i.e., N sim 

≈
 rep ), we compute the Spearman correlation coefficient (SCC)
etween an average matrix corresponding to our N sim 

systems
nd the scaled experimental map. SCC is a statistical covari-
nce measurement of the correlation between two matrices
see section ‘Model assessment’). 

D reconstructed 3D structures reproduce the 

atterns of experimental Micro-C Maps 

o validate the performance of our Hi-BDiSCO reconstruc-
ion method, we use the scaled Micro-C map to generate and
imulate N rep = N sim 

= 100 for each gene system (NXN,
OXC and HOXA), with different random initial structures

nd restraints as described in ‘MATERIALS AND METH-
DS’. We choose N sim 

= N rep to capture all contacts derived
rom the Micro-C map, so that the calculated contact map can
be assessed by SCC calculations. We run the BD simulations
until the systems converge (the energy difference between two
consecutive steps is less than 10 

−21 J). We then use the recon-
structed structures to compute the contact map (the choice
of cut-offs is described in the subsection ‘Distance / Force Pa-
rameter Choices’ under ‘Materials and methods’), and the fre-
quencies are averaged among all the replicas. 

Figure 4 displays the resulting configuration replicas and
comparisons to the scaled Micro-C data. The reconstructed
contact map (upper right triangle) reproduces qualitatively the
patterns (blocks and stripes and frequencies) of the original
experimental Micro-C map (bottom left triangle). The com-
puted Spearman correlation coefficients (SCCs) ( 61 ) between
these two matrices for each system are > 0.74, indicating a
strong correlation (reconstructions with SCC > 0.7 are con-
sidered to be accurate ( 63 )). For validation purposes, we use
N rep = N sim 

= 100 replicas to reproduce scaled frequencies.
We additionally tested N rep = N sim 

= 1000 and obtained an
SCC = 0.838 (see next subsection). The SCC value also shows
that the performance of Hi-BDiSCO is consistent for the three
systems. 

We see from the matrices in Figure 4 that the simulation
results are darker (higher frequency) than the experimental
values for the near-diagonal region. This is because scaling
the Micro-C map to correspond to 100 replicas instead of 1
million cells increases the contact frequencies f ij , making the
reconstructed structures compact. By simulating more replicas
(see next subsection), results would be more reasonable. 

From the reconstructed 3D structures, we see that represen-
tative structures vary, reflecting the chromatin heterogeneity
across cells and fluidity within the cell. 

The time performance of BD reconstruction (averaging
among 100 replicas) in Table 1 show that although the wall
time increases with system size due to the data transfer and
some functions with linear time (e.g., Cholesky decomposi-
tion) ( 37 ), the longest simulation only takes 37.5 minutes. 

Increasing N rep and N sim 

improves the accuracy of 
the reconstruction and subsequent MC fixes 

structural anomalies 

In the prior subsection, our Hi-BDiSCO runs with N rep = 100
from the scaled Micro-C map yielded good performance on
assessing 2D contact maps. Here we show how reconstruction
changes with N rep due to scaling. 

When N rep is small, each replica receives more restraints
during distribution, which results in more compact structures.
Simulating 1 million copies is not feasible, but here we run
N rep = N sim 

= 200 and N rep = N sim 

= 1000 for three gene
systems to assess how performance changes with increasing
N rep . That means that the same restraints are distributed into
more copies. As shown in Figure 5 A and Table 1 , SCC in-
creases from 0.784 (Figure 4 , where N rep = N sim 

= 100) to
0.800 and 0.838 for NXN, from 0.740 to 0.786 and 0.823
for HOXC, and from 0.745 to 0.775 and 0.822 for HOXA,
when N rep is 200 and 1000, respectively. The concomitant de-
crease in short-range contact frequencies is also evident. 

The representative structures for each system are also
shown in Figure 5 A. With N rep = 200 (left), fibers are more
compact than those with N rep = 1000 (right). To quantita-
tively compare these structures, we calculated their volume
and radius of gyration, prior to MC simulations. As shown
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A

B

Figure 4. Evaluation of Hi-BDiSCO reconstructed genome systems, with N rep = N sim 

= 100 replicas, prior to MC simulations. ( A ) For each gene system 

(NXN, H OX C and H OXA), the lo w er triangle of the contact map is the scaled e xperiment al Micro-C dat a, and the upper triangle of the cont act map is 
calculated from BD reconstructed structures, along with the Spearman correlation coefficients (SCC) (see Materials and methods). All gene systems 
show good reproduction of the frequency (colors) and patterns. ( B ) For each gene, we also show representative reconstructed 3D structures colored 
with e x on (blue), intron (dark green) and intergene (red). 

Table 1. Performance of BD reconstruction for different gene systems 

Gene System size N rep = Steps for Time SCC 

(kbp) N sim 

convergence (min) 

100 0.745 
HOXA 105.2 200 11963 37.52 0.775 

1000 0.822 

100 0.740 
HOXC 50.6 200 11826 12.18 0.786 

1000 0.823 

100 0.784 
NXN 40.3 200 13151 10.08 0.800 

1000 0.838 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad1121/7453262 by N

ew
 York U

niversity Libraries user on 28 N
ovem

ber 2023
in Figure 5 B, both properties increase with N rep . Thus, the re-
construction is more accurate as N rep and N sim 

increase. 
Although we studied scaled Micro-C maps with N sim 

=
N rep to validate the reconstruction, more realistic structures
could be obtained if unscaled Micro-C data are used with
N rep close to the number of cells used in the experiment (usu-
ally millions). Simulating such large number of replicas is not
feasible, but as discussed in the next subsection, we can simu-
late a subset N sim 

< N rep to obtain representative structures. 
Choosing N sim 

< N rep and N rep near cell population 

size yields good reconstruction 

Although we have shown that BD simulations with Micro- 
C restraints can artificially fold 3D chromatin fibers to yield 

agreement with the 2D Micro-C map, realistic structures with- 
out artificial restraints and satisfying biophysical conditions 
are needed. Since the choice of N rep and the scale of the Micro- 
C maps affects the compaction level of the resulting structures,
here we choose different N rep depending on the original (non- 
scaled) Micro-C map to study the performance of subsequent 
MC simulations applied to each system with different com- 
paction levels. 

The experimental Micro-C map ( 53 ) corresponds to 1 mil- 
lion cells. For the three gene systems, during the restraints dis- 
tribution (as described in ‘MATERIALS AND METHODS’),
we choose: N rep = 2 M (larger population than experimental) 
for NXN; N rep = 1 M (experimental population) for HOXC; 
and N rep = 100 (smaller population than experimental) for 
the HOXA gene. However, for each system’s simulations (BD 

followed by MC), we select only N sim 

= 100 out of these total 
copies, effectively neglecting some contacts when N sim 

< N rep .
As shown in Figure 6 A, the subsequent MC simulations 

maintain the Micro-C contact patterns for all three gene sys- 
tems, despite the lower number of simulated fibers. In addi- 
tion, structural features, such as hierarchical loops ( 50 ,64 ),
remain after the MC simulations. 
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A

B

Figure 5. Hi-BDiSCO reconstruction of the three genes of Figure 4 (where N rep = N sim 

= 100) with larger replica values N rep = N sim 

= 200 and 1000. ( A ) 
Comparison between scaled experimental Micro-C data and BD reconstructed contact maps, prior to MC simulations. The lower triangle is scaled 
experimental Micro-C data, and the upper triangle of the contact map is calculated from BD reconstructed structures. Spearman correlation coefficient 
(SCC) values are shown for each case. Representative 3D str uct ures from N rep = 200 and N rep = 1000 can be compared to Figure 4 , when N rep = 100. ( B ) 
T he v olume and radius of gyration f or three different N rep v alues (10 0, 20 0 and 10 0 0) as a v eraged across the first 100 replicas, prior to MC simulations. 
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A

B

C D

Figure 6. Comparison between reconstructed chromatin conformations before and after MC simulations for three gene systems (NXN, HOXC and 
HOXA) with choices of N rep based on experimental context (see text). ( A ) contact maps calculated after BD (lo w er triangle) and after MC (upper triangle). 
( B ) R epresentativ e 3D str uct ures from different replicas (e x on (blue), intron (dark green) and intergene (red)) after BD and after MC (wildtype histone tails 
(blue beads), acetylated histone tails (red beads) and LH (teal beads)). The red circles for HOXC and HOXA represent the dangling fiber ends as 
unph y sical spatial problems. ( C ) Change of volume (blue) and radius of gyration (red) for three gene systems. ( D ) RMSD that represents the str uct ural 
changes in the three gene systems. 
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Figure 6 B shows that after the BD reconstructions, the
NXN configurations are open structures, whereas the HOXA
configurations are compact. This is because N rep = 2 M for
NXN and thus few restraints are included in the 100 sim-
ulated copies, but for HOXA, all restraints are included in
the simulated copies. After MC, however, NXN structures
become more compact, and HOXA structures become more
open. 

To quantitatively analyze the effects of MC refinement on
the systems, we calculate the change in volume and radius of
gyration (Figure 6 C) and RMSD (Figure 6 D) after MC. For 
the NXN gene system, MC reduces the volume because N rep 

is larger than the experimental number of cells. For HOXA,
the condensed fibers, due to small N rep , are decondensed by 
MC. HOXC with N rep the same as the experimental number 
of cells shows unchanged volume after MC. The radii of gy- 
ration in Figure 6 C and RMSD values further demonstrate 
that MC following BD makes subtle modifications for the 
over-compact structures (HOXA). Note that we cannot assess 
the structures by SCC because N sim 

� N rep . 
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A B D

C

Figure 7. Evaluation of Hi-BDiSCO reconstruction for a designed life-like 50-nucleosome fiber. ( A ) Target life-like fiber with a distribution of linker lengths 
motiv ated b y e xperimental patterns (str uct ures sho wn in D). ( B ) Comparison betw een cont act maps of 10 0 initial random str uct ures (bottom triangle) 
and reconstructed structures (top triangle) along with Spearman correlation coefficient (SCC). ( C ) Nucleosome interactions of 100 initial random 

str uct ures (green) versus reconstructed structures (red). ( D ) Five representative configurations of initial random str uct ures and reconstructed structures. 

 

H  

t  

N  

t  

s  

N  

t  

t
 

n  

p  

s  

d

R
b

S  

t  

s  

e  

g  

a  

1  

a  

s  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad1121/7453262 by N

ew
 York U

niversity Libraries user on 28 N
ovem

ber 2023
Thus, MC simulations after BD are essential for our
i-BDiSCO reconstruction to incorporate biophysical fea-

ures and resolve unphysical problems. The optimal choice of
 rep is the number of cells used in the experiment, but quan-

itative measurements of reconstruction are still good with
caled input data and N sim 

= 100. To further validate that
 rep near cell population size provides an optimal reconstruc-

ion, we compare calculated to experimental CVC values for
he three gene systems in Supplementary Table S2 . 

Because we simulated the folding of the HOXC gene de
ovo without Micro-C data (previously in ( 51 )), we also com-
are this de novo prediction to Hi-BDiSCO reconstructed
tructures in SI; there, we show that Hi-BDiSCO and MC pre-
icted genome structures are overall quite similar. 

econstruction of known structures demonstrates 

iophysically sound fibers 

o far we have assessed Hi-BDiSCO primarily by comparing
he contact maps, but many 3D structures can map onto the
ame 2D contact map. Because there are no high-resolution
xperimental comparisons for our 3D nucleosome resolution
ene-level structures, simulated life-like 3D structures provide
 reasonable choice for Hi-BDiSCO validation. We generate a
00-configuration ensemble of life-like fibers (70% of linkers
re 26 bp, 20% are 35 bp, and 10% are 44 bp) ( 65 ) by MC
ampling with 50 nucleosomes using random initial zigzag
structures (with wildtype tails and without LH). We then com-
pute the contact map for these 100 random replicas and use
this as a target ‘Micro-C data’. From Figure 7 B, which com-
pares the contact maps of 100 initial random structures (bot-
tom triangle) to that of reconstructed structures (top trian-
gle), we note excellent agreement, with SCC = 0.998. This in-
dicates that Hi-BDiSCO can reproduce the original 3D struc-
tures very well. To analyze our nucleosome resolution struc-
ture further, we compare the nucleosome-nucleosome interac-
tion frequencies before and after reconstruction in Figure 7 C.
We see zigzag peaks at k ± 2, and slightly more long-range
interactions for the reconstructed fibers. The peaks at k ± 2
≈ 0.3 agree with the dominant zigzag structure in discrete
life-like fibers ( 64 ). Thus, Hi-BDiSCO reconstructed fibers are
biophysically meaningful. The five representative structures in
Figure 7 D appear slightly more compact after reconstruction
than the initial random structures. 

See SI for more information on life-like fibers and
nucleosome-nucleosome interactions. 

HOXA gene cluster regulation by RNA Pol II 

Beyond applying our nucleosome resolution mesoscale model
to reconstruct 3D structures with biophysically reasonable
zigzag patterns, we also apply Hi-BDiSCO to help interpret bi-
ological mechanisms such as enhancer–promoter interactions.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
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Figure 8. Regulation of enhancer–promoter interactions by RNA Pol II assessed by Hi-BDiSCO reconstruction. Left. Contact frequency plot for 
enhancer–promoter interactions at increasing time of RNA Pol II inhibition were determined experimentally and by Hi-BDiSCO. The plots compare total 
contact values for experimental and simulation results for 11 enhancer–promoter interactions in the system (relative to the untreated T = 0 control) at 
different time snapshots (0, 30 min, 60 min, 8 h and 24 h). R epresentativ e 3D str uct ures are also shown colored with enhancers (green) and promoters 
(blue) of the HOXA genes, as enlarged at right. 
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How enhancers regulate target gene expression across large
genomic distances remains unclear. Gilad et al. ( 59 ) explore
the role of Pol II pausing by introducing dTAG, a Pol II in-
hibitor, and removing it after an hour. They record the con-
tacts at five time points (0, 30 min, 60 min, 8 h and 24 h)
with Micro-C, as shown in Supplementary Figure S4 . From
the experiment, Gilad et al. observed a decreased number of
enhancer–promoter interactions after adding dTAG, but in-
creased after removing dTAG. 

We applied Hi-BDiSCO to study how chromatin folding
regulates the transcriptional activity of the HOXA gene clus-
ter as follows. We reconstructed 3D structures, with N rep =
1 M and N sim 

= 100, for each of the 5 Micro-C maps (differ-
ent times). For the structures corresponding to each time as-
sessed, we measure the enhancer–promoter contacts relative
to the untreated T = 0 control for all enhancer–promoter con-
tacts as follows. Enhancer-promoters are considered in con-
tact if they are < 50 nm from one another. Each gene in the
HOXA cluster has one promoter and one enhancer. Thus, in
total, there are 11 distances for 11 enhancer–promoter pairs.
As shown in Figure 8 , we reproduce the same trend as cap-
tured experimentally, supporting the conclusion that paused
Pol II decreases enhancer–promoter contact levels. 

Reconstruction of Fbn2 gene reveals cohesin and 

RNA Pol II roles on chromatin architecture 

Goel et al. recently applied Region Capture Micro-C
(RCMC) ( 12 ), a technique that improves Micro-C data res-
olution to 50 bp, to study genome organization. In particular,
they study several gene regions, such as Sox2, Klf1 and Fbn2
in mESC, and obtained highly nested 3D interactions showing
microcompartments. In their first experiment, they compared
a system without cohesin ( −cohesin) to a control system (+co-
hesin control). In their second experiment, they inhibited tran- 
scription by removing RNA Pol II and determining genome ar- 
chitecture at increasing times of RNA Pol II elimination treat- 
ment. Thus, three RCMC datasets were produced: wildtype 
data; RNA Pol II elimination for 45 min ( −Pol II 45 min); 
and RNA Pol II elimination for 4 h ( −Pol II 4 h). 

We used Hi-BDiSCO (with N rep = 1 M and N sim 

= 100) to 

reconstruct 3D structures of the Fbn2 gene region (100 kb,
chr18:58110000..58210000) under the five conditions (Fig- 
ure 9 A, B). By studying the Fbn2 structure under different 
conditions, we can assess the role of cohesin and RNA Pol 
II on chromatin architecture. To quantify Fbn2 architecture,
we calculate the average volume and radius of gyration among 
the 100 simulated replicas (Figure 9 C), and the interaction fre- 
quencies against genomic distance (Figure 9 D). 

As shown in Figure 9 A, experimental contact maps for 
‘ −cohesin’ and ‘+cohesin control’ appear similar, but the SCC 

between these two experimental maps is around 0.82, indi- 
cating subtle differences. Hi-BDiSCO reconstruction suggests 
what these differences are in fiber condensation. As shown in 

Figure 9 C and D, after cohesin depletion, there is a volume 
increase and a decrease of long range interactions (internucle- 
osome interaction frequencies plotted as interaction frequency 
versus genomic distance). Cohesin depletion induces a loss of 
loops and thus results in more open fibers. 

For the study of transcription inhibition, Figure 9 B shows 
a reduction of contacts in the contact maps when we compare 
the wildtype system at 45 min and 4 hr treatment conditions.
The reconstructed 3D structures (Figure 9 B) and the volume 
change (Figure 9 C) show the decreased fiber compaction upon 

RNA Pol II inhibition. As discussed in the prior subsection 

for the HOXA region, a reduction of enhancer–promoter in- 
teractions is due to the pausing / removing of Pol II, and thus 
the fiber is less compact. When comparing chromatin global 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
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Figure 9. Role of cohesin and RNA pol II in genome architecture e v aluated b y Hi-BDiSCO reconstruction. A and B. Experimental Region Capture Micro-C 

(RCMC) maps ( 12 ) and representative Hi-BDiSCO reconstructed 3D structures for part of the Fbn2 gene region (chr18:58110 0 0 0..58210 0 0 0). In ( A ), 
+cohesin control map is shown at top, and cohesin depletion treatment ( −cohesin) map at bottom. In ( B ), wildtype control map is shown at top, the 
inhibition of transcription by removing RNA Pol II for 45 min in the middle, and inhibition of transcription map by removing RNA Pol II for 4 h at the 
bottom. ( C ) Associated volume and radius of gyration (Rg) for each system, where blue represents the volume and purple represents the Rg for each 
system. ( D ) Analysis of internucleosome interaction contacts for each system. The left shows the +cohesin (green) and −cohesin (brown); the right 
shows the wildtype control (grey), −Pol II 45 min (blue) and −Pol II 4 h (purple). 
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A

B

Figure 10. Further applications of Hi-BDiSCO to single cell data and ensemble analysis. ( A ) Contact map derived for a single str uct ure is used to 
demonstrate scHi-C reconstruction. Bottom left: target str uct ure and related contact map. Top right: reconstructed structure and contact map. ( B ) 
Unsupervised clustering of wildtype Fbn2 gene reconstructed structures using a K -means clustering algorithm in the Python scikit-learn package. Two 
representative str uct ures for each of the 8 distinct clusters resulting of the 100 str uct ures are sho wn. Nucleosome clutch analy sis (middle) sho ws the 
a v erage number of nucleosomes per clutch in each cluster as one feature that can be analyzed (see SI for more). 
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tructure at 45 min and 4 h treatment, not much difference is
een; the volume and radius of gyration do not change. How-
ver, intra-clutch contacts increase, and local loop contacts de-
rease (Figure 9 D). 

These results demonstrate that the structural information
btained from the reconstructed 3D structures can comple-
ent and expand the information obtained from 2D maps,
nderscoring the utility of 3D reconstruction in studying
enome organization and function. 

iscussion 

any reconstruction methods are now available ( 21 ,23 ) aim-
ng to bridge the 2D chromosome conformation capture data
ith 3D genome organization, including gene folds, TADs,

ompartments and whole genomes. We have developed an ef-
cient nucleosome-resolution strategy for folding gene-level
hromatin fibers based on chromosome conformation cap-
ure information. Namely, we use a contact-based reconstruc-
ion method with a population-based BD sampling algorithm
ith our nucleosome-level resolution mesoscale model to fold

ene-level structures. We have demonstrated the reproduction
f Micro-C patterns for several systems, including HOXA,
OXC and NXN, with different choices of replicas ( N rep ) to
istribute the restraints into, and different choices of simu-
ated copies ( N sim 

≤ N rep ). We showed that the BD simulation
ithout considering tails / LHs is sufficient to reproduce the

ontact frequencies of the scaled Micro-C map when scaled
ata are used with N sim 

= N rep ; alternatively, N sim 

≈ N rep

ith N rep similar to the number of cells used in the experi-
ents yields good SCC values for the original Hi-C map. The

ubsequent MC simulation is essential to resolve any spatial
roblems and provide biological context by adding histone
ails and linker histones so that the final structures provide re-
listic insights into the gene folding motifs and mechanisms.
he strategy itself is not limited to our mesoscale model and
an be applied to any 3D chromatin / chromosome model. 

By studying the enhancer–promoter interaction of the
OXA gene region with paused RNA Pol II, and exploring

he roles of cohesin and transcription inhibition of chromatin
rchitecture of the Fbn2 gene region, we showed that our re-
onstructed structures can reproduce the information from
D maps and provide insights into structural features and
echanisms. 
Besides Hi-BDiSCO, other reconstruction approaches with

ucleosome or near-nucleosome resolution include MiOS ( 60 )
nd POSSUMM ( 66 ). As in Hi-BDiSCO, both methods con-
ider bioinformatics data (in different ways), such as Chip-seq
ata, and use Hi-C / Micro-C data as a reference to guide the
hromatin folding. Although the Hi-C / Micro-C maps used
ave different resolutions, the resulting structures have sim-
lar physical properties. Clearly, the problem remains that the
econstructed structural ensemble is only a possible subset to
any possible real-life structures that correspond to the Hi-
 / Micro-C data. In our recent review ( 23 ), we discussed the
alidation of the reconstructed structures by statistical covari-
nces (SCC or PCC close to 1), or low-to-high resolution mi-
roscopy (e.g., FISH ( 28 ,67 ), cryo soft X-Ray ( 68 ) and OligoS-
ORM ( 60 )). However, many reconstructed genome struc-

ures can reproduce similar Hi-C / Micro-C maps, and the res-
lution of the experimental structures is much lower than the
esolution of the reconstructed 3D structures. Statistically, all
such models may provide valuable structural properties and
associated mechanisms. See ( 63 ) for extended discussion on
examples of structural assessment. 

From a modeling point of view, challenges for 3D recon-
structed models from 2D maps remain, such as: the lack of
a true structure to compare with; obtaining high resolution
3D models of large genomes from Hi-C data; simulating mil-
lions of replicas to reproduce cell populations; and handling
biases and noises of the Hi-C maps. Our approach is most
suitable for Micro-C data and fibers at kb lengths, and cur-
rently uses the raw Micro-C data without correction. From
these Micro-C data, we generate an ensemble of structures
that aims to represent structures in single cells. Although
single-cell Hi-C (scHi-C) data are available, the resolution is
not sufficiently high for Hi-BDiSCO. Yet it is possible to cre-
ate structures for scHi-C data, as done, for example, in Fig-
ure 10 A, where one Hi-C map corresponds to one structure
(see Supplementary Figure S5 for more details). We are also
limited by the size that MC and BD can handle (about 500
nucleosomes). To study larger systems like TADs, compart-
ments, or even whole genomes, a further coarse-grained model
(or polymer model) can be used with the same strategy to dis-
tribute Hi-C data as restraints. Data interpolation is an alter-
native strategy for incorporating lower-resolution data. With
such adjustments, larger systems could be studied to explore
compartment mechanisms ( 66 ). In addition, clustering the re-
sulting configurations by machine learning algorithms can
also help analyze cluster features. Our clustering of structures
for the Fbn2 gene in Figure 10 B (see Supplementary Figure S6
for details) reveals sub-population of structures that might
correlate with different cell subtypes. Overall, such represen-
tative ensembles of 3D structures at the mesoscale level can
help shed insight into important chromosomal activity and
structure / function relationships. 

Data availability 

The working Hi-BDiSCO code has been deposited in GitHub
under the Schlick lab group: https:// github.com/ Schlicklab/
Hi-BDiSCO , and in Zenodo: https:// doi.org/ 10.5281/ zenodo.
8400541 . There, we provide Python scripts for converting ex-
perimental data (e.g., MNase, Chip-seq, Hi-C / Micro-C) into
the input structures of our mesoscale structures and restraints,
and the binary executables for BD reconstruction and MC
subsequent simulations. The executable code runs on the pop-
ular Linux CentOS 7, RedHat / Roky 7 and 8, Ubuntu 20 and
22 platforms and works with both Intel and AMD CPUs. 

Users may incorporate the provided example to test the
code or replace the experimental data with their data of choice
in the ‘data’ folder and run the provided shell scripts to per-
form simulations and obtain reconstructed 3D structures. If
no MNase or Chip-seq data are provided, life-like fibers (with
user defined density of tail acetylation and LH) will be gener-
ated for Hi-BDiSCO to perform the simulation. 

More details are provided in the README on the GitHub
repository. Interested users may email us for further help. 

Supplementary Data 

Supplementary Data are available at NAR Online. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
https://github.com/Schlicklab/Hi-BDiSCO
https://doi.org/10.5281/zenodo.8400541
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1121#supplementary-data
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