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Summary. The central dogma of biology—that DNA makes RNA makes protein—
was recently expanded yet again with the discovery of RNAs that carry important
regulatory functions (e.g., metabolite-binding RNAs, transcription regulation, chro-
mosome replication). Thus, rather than only serving as mediators between the hered-
itary material and the cell’s workhorses (proteins), RNAs have essential regulatory
roles. This finding has stimulated a search for small functional RNA motifs, either
embedded in mRNA molecules or as separate molecules in the cell. The existence of
such simple RNA motifs in Nature suggests that the results from experimental in
vitro selection of functional RNA molecules may shed light on the scope and func-
tional diversity of these simple RNA structural motifs in vivo. Here we develop a
computational method for extracting structural information from laboratory selec-
tion experiments and searching the genomes of various organisms for sequences that
may fold into similar structures (if transcribed), as well as techniques for evaluating
the structural stability of such potential candidate sequences. Applications of our
algorithm to several aptamer motifs (that bind either antibiotics or ATP) produce
a number of promising candidates in the genomes of selected bacterial and archaeal
species. More generally, our approach offers a promising avenue for enhancing cur-
rent knowledge of RNA’s structural repertoire in the cell.

1 Introduction: Importance of RNA Structure and
Function

RNA molecules play essential roles in the cellular processes of all living or-
ganisms. The wonderful capacity of RNA to form complex, stable tertiary
structures has been exploited by evolution. RNA molecules are integral com-
ponents of the cellular machinery for transcription regulation, chromosome
replication, RNA processing and modification, and other essential biological
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functions [9, 41, 48]. Recent discoveries that noncoding RNAs (ncRNAs—
RNA molecules that have specific functions other than directing protein syn-
thesis through translation) make up a significant portion of the transcriptome
(entire set of expressed RNA and protein transcripts of an organism) further
suggest the prominent role of RNA in cellular function [34, 16]. In particular,
cells employ many small ncRNAs such as microRNAs (21-23 nt) to regulate
gene expression; small interfering RNAs (siRNAs), often complementary to
messenger RNAs, to mediate mRNA degradation; and small nucleolar RNAs,
important in post-transcriptional modification of ribosomal and other RNAs
[3, 24, 23]. Thus, ncRNAs may hold the key for understanding genetic control
of cell development and growth [31, 32].

With rapidly growing interest in RNA structure and function, as well as
emerging technological applications of RNA to biomedicine, new scientific
challenges regarding RNA are at the forefront. One important objective is to
increase the functional repertoire of RNA. This can be tackled by systemat-
ically identifying and characterizing the ncRNAs in genomes, or by creating
novel synthetic functional RNAs using in vitro selection methods. Although in
vitro selection is a proven tool for finding novel functional RNAs, it is limited
in scope to relatively small RNAs (<250 nt) [53].

Here we report development of a theoretical/experimental approach for
expanding the functional repertoire of RNA using a combination of in witro
selection and computational methods. Alternatively, the analysis of RNA mo-
tifs as mathematical graphs, as developed recently ([14, 26, 35], and see the
Appendix), may suggest candidate novel RNA topologies to direct computa-
tional/experimental searches for ncRNAs in genomes and synthetic functional
RNAs in the laboratory. Before we present our approach, we describe the mo-
tivation for exploring the connection between synthetic and natural RNAs.

2 Exploring the Connection between Synthetic and
Natural RNAs

In recent years, numerous target-binding nucleic acid molecules (known as
aptamers) have been identified; the targets include organic molecules, an-
tibiotics, peptides, proteins, and whole viruses [53, 21]. In addition, in vitro
selection experiments have produced novel RNA enzymes (ribozymes) and
led to applications in biomolecular engineering, e.g., allosteric ribozymes and
biosensors [44, 45, 46].

The process of in witro selection simulates evolution in the laboratory
[53, 10, 47, 51]. Starting with a large pool of small, random-sequence RNA
molecules, the sequences are iteratively selected for a physical or chemical
property (e.g., binding affinity or catalysis) by amplifying the enriched se-
quence pool using the polymerase chain reaction (PCR). After ~8-15 cycles
have been completed, the molecules are cloned and sequenced. The resulting
artificial molecules may be target-binding RNAs (called aptamers) or novel
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catalytic RNAs. Since the process of selecting functional molecules is simi-
lar to evolution, and the process takes advantage of the PCR, common motifs
among the sequences with a significant amount of sequence conservation often
emerge.

The binding and catalytic properties of synthetic and natural RNAs are
mediated by specific sequence and structural motifs. In 2001, Szostak’s group
demonstrated that the motif of the natural functional hammerhead ribozyme
can be selected from random sequence pools [39], suggesting multiple origins
for the ribozyme. Because a synthetic aptamer discovered by Wallace and
Schroeder [52] and crystallized by the Patel group [49] binds streptomycin
(which is naturally produced by bacteria) tightly and specifically, Piganeau
and Schroeder reinforced the likely connection between natural and synthetic
RNAs [36]. Indeed, motifs similar to aptamers may exist in natural RNAs be-
cause aptamers bind to certain targets that are prevalent in Nature and recent
findings also show that metabolite-induced RNA conformational changes con-
trol gene expression in bacteria and other organisms [33, 54, 55]. As Piganeau
and Schroeder conclude in their commentary on the recent article by Patel
and collaborators [49] on the structure of a 40-nt aptamer binding the an-
tibiotic streptomycin, “We can now predict that many biosynthetic pathways
will be requlated by metabolite binding ‘natural aptamers,’ and we might even
find a structure similar to the streptomycin aptamer in a bacterium producing
streptomycin” [36].

Since in vitro selection is a technique that simulates an evolutionary pro-
cess, it is reasonable that structures discovered through in vitro selection may
have also evolved in the cell. The methods we develop here are meant to ex-
plore these intriguing connections between natural and synthetic RNAs in a
general and systematic manner.

3 Methods

The components used in our method are standard, but the combination is
novel. Namely, we combine the following techniques and tools: output from
in vitro selection of functional molecules; RNAMotif [29], a computational
tool that allows searches for RNA sequences in genomic databases that might
fold into specified secondary conformations; and the Vienna RNA Package
[22], which can predict the secondary structures of RNA molecules from their
sequence, as well as calculate other properties, such as “sub-optimal foldings”
and heat-capacity curves.

3.1 Aptamer Search Algorithm

Our aptamer search method has three major steps:
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Fig. 1. The hydrogen-bonding scheme of the streptomycin aptamer developed by
the Schroeder group [52]. The dotted lines represent hydrogen bonds between the
streptomycin molecule (center) and the nucleotides in the binding pocket. This type
of information is ideal for pinpointing the specific nucleotides that account for the
binding specificity. The secondary structure of the molecule is shown in Figure 2a.
(Adapted from [49].)

1. Create motif descriptors by extracting the critical structural features from
the experimental aptamer molecule that confer onto the molecule its spe-
cial physical or chemical property (e.g., binding affinity);

2. Search the gemomes of selected organisms using the RNAMotif tool for
the aptamer structure specified by the descriptor we have created;

3. Assess the quality of the candidate sequences (e.g., nature and stability
of fold, energetic stability, statistical significance, etc.).

The first step involves the analysis of motif data from in vitro selection
experiments and, if available, any structural studies of specific motifs. Impor-
tant structural information includes overall qualitative structure (e.g., loops,
bulges, hairpins, lengths of stems, etc.) as well as any specific sequence infor-
mation that may be critical to the hydrogen-bonding scheme (Figure 1).

Figure 1 illustrates this process for the streptomycin aptamer. The hydro-
gen-bonding scheme in the streptomycin-aptamer complex (discovered by the
Schroeder group [52]) was crystallized and structurally characterized by the
Patel group [49]. The corresponding secondary structure is shown in Figure
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2d. This motif has three helices (each of variable length) and two asymmetric
bulges. Because the bases shown in Figure 1 are known experimentally to be
important to the binding specificity, we define the target sequence motif in
the first asymmetric bulge to be GNANNUG. Likewise, we retain bases associated
with other bulges since they contribute to the binding affinity.

After collecting the relevant structural information, we search the genomes
of numerous organisms using RNAMotif as described below. This yields for
each aptamer a pool of sequences that could potentially fold into the specified
experimental aptamer structure. To filter this pool further, we “fold” each
candidate sequence using the 2D prediction tool in the Vienna RNA Package.
We retain the predicted structure if it is similar to the experimental aptamer
structure but discard it otherwise; the similarity is determined by inspection:
the sequence is retained if the general topology of the predicted structure is
similar to the experimental structure. This process greatly reduces the size of
the candidate sequence pool.

Finally, we subject the remaining candidates (sequences that fold as de-
sired) to further tests that allow us to assess their potential as significant
matches based on energetic and statistical measurements for significance and
stability.

3.2 RNAMotif Scanning Tool: Searching for Secondary Structural
Motifs

Sequence and secondary structural motifs can be searched for in genomes using
the scanning tool RNAMotif [29]. The qualitative topological and secondary
structural elements are specified in a “descriptor” (specifying the structural
connectivity and the length of helices, loops, bulges, etc.) as well as any
specific sequence information (such as a GNRA loop). The program searches
for sequences in genomes that could potentially fold into the specified sec-
ondary structure based on Watson-Crick base pairing rules. Additionally, the
sequences are ranked based on the energy of folding them into the specified
secondary structure.

3.3 RNA Folding Algorithms: Secondary Structure Prediction

Available 2D RNA folding algorithms can predict the patterns of base pair-
ing, the presence of base pair mismatches, and regions with unpaired bases
(e.g., loops, bulges, and junctions). For RNA tree structures, the 2D folding
algorithm bundled with the Vienna RNA package (P. Schuster and coworkers
[22]), is widely used. (One of the limitations of the 2D prediction algorithms is
that pseudoknots® are not accounted for since they are difficult to predict, but

3 A pseudoknot forms when consecutive single-stranded regions a, x, b, y, ¢, z,
d (where x, y, and z are the connecting regions) fold on each other such that
a hydrogen-bonds with ¢ and b with d. A pseudoknot is technically part of a
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efforts include pseudoknot prediction [37].) This shortcoming in 2D RNA fold-
ing algorithms limits our RNA folding applications to tree structures, which
nonetheless represent a large set of structures to explore.* The current algo-
rithms also do not account for the effect of magnesium ions, which have been
shown to be critical for RNA folding. However, the Vienna RNA package is
reasonably accurate for short sequences (<100 nt), and in addition to predict-
ing the minimum energy 2D structure, it can calculate suboptimal structures
and melting curves (specific heat curves, as described next).

3.4 Melting Curve Analysis of Candidate Sequences

Biological molecules possess stable structures at physiological temperatures.
The stability of RNA secondary structures with respect to temperature change
can be analyzed using heat-capacity or melting curves. These curves represent
the amount of energy absorbed per unit change in temperature (i.e., dE/dT
versus T', where F is the RNA’s internal energy). For each candidate sequence,
we compute the theoretical melting curve using tools available in the Vienna
RNA Package. Additionally, to discriminate random from functional RNA
sequences, we shuffle each candidate sequence 1,000 times and compute the
corresponding melting curves. The melting temperature, T},,, is defined as the
temperature of the highest peak; it may also be interpreted as the transition
temperature at which the RNA molecule’s secondary structure experiences
significant disruption.

Additionally, for each sequence (the candidate and the randomly shuffled
ones), we plot the melting temperature (T,) against the free energy (F) as a
further indicator of stability. The T}, versus F' plot maps the global physical
characteristics of RNA secondary folds. Using principal component analysis,
we compute a 90% confidence ellipse, and check to see whether the candidate
sequence falls outside the ellipse (i.e., is significantly stable).

3.5 Conformational Energy Landscape Analysis

We also calculate the conformational energy landscape of the secondary RNA
fold of each candidate sequence. The shape of this energy landscape of-
fers an alternative approach for discriminating RNA-like from non-RNA-like
molecules. To assess different secondary structures, we plot for each subopti-
mal structure (up to 10 kcal/mol above the global minimum) its energy (E)
against a “distance” (D) from the minimum energy structure. We define D

molecule’s tertiary structure though it is often convenient to consider it a sec-
ondary structural element since it involves base-pairing interactions [41].

4 Note that general 3D prediction algorithms for RNAs are not yet available and
constitute a significant challenge. This gap between 2D and 3D structure predic-
tion is best addressed at present by subjecting any predictions based on 2D folds
to experimental tests.
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to be the base pair dissimilarity between the minimum energy structure and
each suboptimal structure. This E versus D plot for optimal and suboptimal
structures defines the conformational energy landscape of an RNA sequence.

Furthermore, we quantify the conformational energy landscape of each
sequence by computing the “Valley index,” V, as described in [27]. The Valley
index is a Boltzmann-weighted average of the distance between all pairs of
structures (minimum-energy and sub-optimal). A large Valley index implies
many low energy competing structures that have very different conformations.

Similar to the melting curve analysis, each sequence is randomly shuffled
1,000 times, and the Valley index is plotted against the free energy of the
sequence. A 90% confidence ellipse is computed, and the candidate sequence
is tested to see whether it falls outside of the ellipse.

3.6 Statistical Analysis

Each secondary structure motif can be considered as a “word” in the 4-letter
nucleotide alphabet. For example, the probability of finding any given letter
in a random sequence of nucleotides is 1/4, so the probability of finding any
specific sequence of length N is 1/4". Likewise, a complicated descriptor has
an associated expected frequency. However, given the complexity of secondary
structure descriptors, this number is difficult to compute analytically. There-
fore, these frequencies are estimated using a Monte Carlo method, in which
the number of matches to a given descriptor in a random 1 Mb sequence is av-
eraged over 1 million tries. Provided the genomes of interest have a nucleotide
distribution that is close to uniform,® our computation provides an estimate
to the number of matches to the descriptor that we expect by probability
alone. With this information, we can estimate whether a secondary structure
motif is over or under-represented in a given genome.

3.7 Computational Performance

Creating the descriptor definition in terms of skeletal motifs requires biological
intuition and experimentation. Once defined, we employ the simple “program-
ming language” of Macke and colleagues [29] to describe an RNA secondary
structure of any complexity.

® The assumption that that a genome is uniformly distributed in the four bases is
strong. Many genomes deviate from uniform distributions, and often it is more
fruitful to consider di- or trinucleotide distributions. However, our uniform distri-
bution assumption makes the analyses simple and can later be refined. We also
performed tests in which we biased the base distribution to mimic the Strepto-
myces avermitilis genome (the genome we used with the largest deviation from
uniformity) and computed the expected frequency of matches; the results were
similar to the case of uniform distribution.
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The genome searches using RNAMotif are very rapid. The search involving
the most complicated descriptor (streptomycin) and largest genome (Strepto-
myces avermitilis) can be completed in less than one minute. In general, the
computational speed depends on genome size and complexity of the descrip-
tor.

Subsequently, the candidate sequences are folded. We use the RNAfold
program as part of the Vienna RNA package. For a sequence of less than
100 nucleotides, the predicted secondary structure is computed in a matter
of seconds. Generating sub-optimal structures, however, is relatively lengthy,
because sequences of similar lengths can have drastically different numbers
of sub-optimal structures (e.g., ranging from ~150 for some sequences to
~200,000 for others). However, the generation of each suboptimal structure
is extremely fast (even the case where over 200,000 structures were generated
took only 2 minutes to finish).

The energetic and statistical analyses are the most computationally expen-
sive. For the scatter plots, we compute the Valley index and melting curve for
1,000 random permutations of a given sequence. For the statistical evaluation,
we search a 1 Mb sequence 1 million times. The combined calculations take
several weeks, with the majority of the time in the Monte Carlo evaluation.

All computations were performed on an SGI 300 MHz MIPS R12000 IP27
processor with 4 GB of memory.

4 Results

4.1 Candidate Sequences in Bacterial and Archaeal Genomes:
Initial Search Results

We began searches for three aptamers that showed binding affinity to an-
tibiotics (chloramphenicol [6], streptomycin [52, 49], and neomycin B [25]) in
bacterial genomes, as well as for an aptamer that showed affinity for ATP
[40] in archaeal genomes. The descriptors are shown in Figure 2. We use rep-
resentative species for searching: since the Streptomyces family accounts for
many of the known antibiotics (including those used here), we use all available
Streptomyces genomes. Additionally, we choose E. coli genomes since they are
among the best characterized bacterial species (and a staple of many biologi-
cal studies). Other bacterial genomes were selected randomly. For the searches
involving the ATP aptamer, we used all the available archaeal genomes at the
time of the study from the National Center for Biotechnology Information
(www.ncbi.nlm.nih.gov). The search results are displayed in Tables 2 and 1.

Tables 1 and 2 describe our results for these four aptamer targets. First,
we note that the neomycin B candidate pool is much larger than both the
chloramphenicol and streptomycin pools, because it is simpler (12-17 nt, with
a simple loop motif; see Figure 2c).
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Fig. 2. The four experimental aptamers (left side of each pair) used in this study
along with our constructed motif descriptors (right). Regions with many ‘N’s are
variable in length. The nucleic acid base symbols are defined as follows: N: any base;
V: A, C,or G; S: C or G. We search the genome of an organism for any sequence that
fits into the descriptor consensus (allowing for slight mismatches). The experimental
papers associated with the aptamers are: ATP [40], Chloramphenicol [6], Neomycin
B [25], and Streptomycin [52, 49].

Second, we see that the average number of matches to neomycin B in
Streptomyces genomes is four, while the average number in FE. coli genomes
is four times greater. Since the average Streptomyces genome size is almost
twice that of the average E. coli genome (~9 Mb versus ~5 Mb), these trends
are significant because probability alone would predict the number of hits in
Streptomyces genomes to be about twice as many matches as E. coli, not one
fourth as we obtain. This suggests a preference for or discrimination against
this aptamer, i.e., either Streptomyces is significantly missing this structure,
or E. coli has a significantly large occurrence of it.

More rigorously, the Monte Carlo method described above estimates the
expected frequency of each of the descriptors per 1 Mb of uniformly dis-
tributed random sequence. The Monte Carlo results are listed in Table 3 and
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the expected number of matches are listed in Tables 2 and 1. This information
reveals several interesting trends. For streptomycin, which exhibits a number
of matches similar to the computed expected number of matches, no signif-
icant findings of aptamer hits can be claimed; however, pools for neomycin
B, chloramphenicol, and ATP show significant deviations from the expected
behavior (e.g., much smaller for the Streptomyces genomes and much larger
for E. coli genomes for neomycin B). The archaea genomes tend to agree with
the expected number of matches, except for several genomes marked in bold

in Table 1.

Table 1. Number of initial candidate sequences for the ATP-binding aptamer in
selected archaeal genomes. Bold entries exhibit significant deviations from the ex-

pected number of matches.

ATP
Genome Size (Mb)|Observed Expected
Aeropyrum perniz 1.7 6 1.6
Archaeoglobus fulgidis DSM 4304 2.2 6 2.1
Halobacterium sp. NRC-1 2.6 4 2.5
Methanobacterium thermoautotrophicum str. AH 1.8 6 1.7
Methanococcus jannaschii 1.7 4 1.6
Methanopyrus kandleri AV19 1.7 3 1.6
Methanosarcina acetivorans C2A 5.8 12 5.5
Methanosarcina mazei Goel 4.1 5 3.9
Pyrobaculum aerophilum 2.3 2 2.2
Pyrococcus abyssi 1.8 3 1.7
Pyrococcus furiosus DSM 3638 1.9 8 1.8
Pyrococcus horikoshis 1.8 3 1.7
Sulfolobus solfataricus 3.0 2 2.8
Sulfolobus tokodaii 2.7 4 2.5
Thermoplasma acidophilum 1.6 2 1.5
Thermoplasma volcanium 1.6 2 1.5
Total 72

4.2 Structurally Filtered Search Results

Next, we further filter the pools of matches to eliminate candidate sequences
that may not fold as intended. This step reduces our total pool of candidate
sequences greatly, from 139 to 32 matches in bacterial genomes and from 72
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Table 2. Number of initial candidate sequences for the three antibiotic-binding
aptamers in selected bacterial genomes. Bold entries exhibit significant deviations
from the expected number of matches.

Size |Chloramph.|Streptomycin|Neomycin B
Genome (Mb)|Obs. Exp. |Obs. Exp. [Obs. Exp. |Tot.
Streptomyces avermitilis 92 | 0 3.1 2 0.7 6 19.8 | 8
Streptomyces coelicolor 88 | 0 2.9 1 0.7 1 18.9 | 2
E. coli K12 47| 7 1.6 1 0.4 11 101 | 19
E. coli O157:H7 56 | 7 1.9 1 04 17 12.0 | 25
E. coli O157:H7 EDLY33 56 | 7 1.9 1 04 19 12.0 | 27
E. coli CFT073 53 | 7 1.8 0 0.4 17 114 | 24
Neisseria meningitidis MC58 2.3 | 1 0.8 0 0.2 9 4.9 10
Neisseria meningitidis Z2498 2.2 | b 0.7 0 0.2 9 4.7 14
Sinorhizobium meliloti 37 1 1.2 1 0.3 3 7.9 5
Chlamydia trachomatis 1.1 4 04 0 0.1 1 2.4 5

Tot.| 39 7 93 139

Table 3. Computed expected frequencies of the descriptors per 1 Mb of uniformly
distributed random sequence.

Descriptor Frequency +1 Standard Error
Chloramphenicol 0.3320 + 0.0007
Streptomycin 0.0778 £ 0.0003
Neomycin B 2.1471 4+ 0.0015
ATP 0.9424 + 0.0009

to 5 matches in archaeal genomes. In particular, only one candidate sequence
remains for the streptomycin aptamer.

4.3 Energetic Analysis Discriminates Natural from Random RNA
Sequences

With the significantly smaller pool of filtered candidate sequences, we now
proceed to evaluate the candidates based on energetic considerations. Be-
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cause biological RNA molecules form stable structures at physiological tem-
peratures, specific heat curves and conformational energy landscapes have
expected characteristics, as elaborated below.

First, we compute the melting curves and melting temperatures of the
candidate sequences and compare them to those of random permutations of
the sequence. We plot the melting temperatures of our candidate and its
permuted pool against the free energy. A promising candidate should have
distinct characteristics from the random pool. In certain cases, we indeed find
the candidate sequence to be apart from the bulk of the random sequences;
Figure 3 shows how the sequence of interest falls outside a computed 90%
confidence ellipse.

Positive Tm-F Test
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Fig. 3. Scatter plot of the melting temperatures (Tr,) of the candidate sequence and
its 1,000 random permutations versus the free energy of their structure ensembles.
Notice that the candidate sequence lies outside the 90% confidence ellipse, signifying
an especially stable structure.

Secondly, we analyze the conformational energy landscape of each can-
didate sequence, as shown in Figure 4. That is, we plot the energy of each
suboptimal structure versus the distance of the suboptimal structure to the
minimum energy structure. We observe that some candidates possess con-
formational energy landscapes with multiple low minima, while others have
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very steep single-minima landscapes. A stable aptamer structure should have
a sharp, deep minimum and a funnel-like landscape (Figure 4, circles). This
means that for a given sequence, the more different a fold looks from the min-
imum energy fold, the higher energy it is. A random landscape, or a shallow
one with multiple minima (as in Figure 4, triangles) likely has other different
and stable structures for the same sequence that are almost isoenergetic to
the minimum energy structure. This information is quantified in the compu-
tation of the Valley index. Structures with unfavorable conformational energy
landscapes have larger Valley indices. This provides for a quantitative test
of the energetic stability of the candidate sequence’s minimum energy struc-
ture. As described above, each sequence is shuffled 1,000 times and the Valley
indices of all the sequences are plotted against their free energy (see Figure
5). A sequence that falls outside the bulk of the random sequences is proba-
bly significantly stable. Using the analyses above, we evaluate the candidate
sequences that are most likely to have the physical properties of biological
molecules. Our tests are stringent indicators of stability, as only 24% of the
candidate sequences pass the melting temperature test, while only 14% pass
the Valley index test. Any sequence that passes the Valley index test also
passes the melting temperature test. Furthermore, the tests were conducted
on several known biological RNAs (5S, U5, U6, U7, and Gln tRNA), and all
of them passed the tests with the exception of one sequence which did not
pass the Valley index test.

Candidate Sequences

Selected candidate sequences are shown in Table 4, including the results of
energetic tests, the computed physical quantities, and their locations in the
genome. Some of the sequences occur in non-coding regions, while others oc-
cur in genes of known and unknown functions. Many of the sequences occur
multiple times in different genomes, and even in the same genome. For exam-
ple, the two candidates from the ATP pool pass both the melting temperature
and the Valley index tests. They occur inside the plasmids of Halobacterium
in non-coding regions. On the other hand, the streptomycin pool candidate
sequence passes neither of the energetic tests, yet shows very positive physical
qualities (e.g., high melting temperature) and is also located in a non-coding
region. The first two neomycin B sequences pass both energetic tests with
the first one in a non-coding sequence while the second is located in a hy-
pothetical protein with a function that is not currently understood. Finally,
the chloramphenicol pool sequence passes neither of the tests, and does not
exhibit especially stable characteristics. However, it is located in the ECs1492
gene, which encodes for a transcription-repair coupling factor that is respon-
sible for a mutation frequency decline. It is possible that this may explain
another mode of action for chloramphenicol, namely that it increases tran-
scription mutation frequency. Finally, based on the data in Tables 2 and 1, it
is possible to attribute increased significance to certain matches based on the
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Fig. 4. Conformational energy landscapes of two candidate sequences for the
neomycin B antibiotic. The “good” candidate, marked with circles, exhibits a sharp,
steep slope, while the “bad” candidate, marked with triangles, is more random, with
multiple isoenergetic minima.

statistical representation of the motif in a given genome. For example, it is
easily seen that E. coli accounts for a significantly large number of neomycin B
motifs, compared with what is expected. Therefore, the neomycin B matches
located in the E. coli genomes may have a higher likelihood of existing in
vivo.

5 Conclusions and Future Directions

The method presented here for searching for artificial aptamer structures in
the genomes of various organisms has produced promising RNA sequences
that may be functionally important. In response to the assertion of Piganeau
and Schroeder [36], it is indeed likely that aptamer structures will be found
i Vivo.

Further work is required to search all genomes comprehensively, investigate
other aptamers, develop ways to reliably distinguish biological RNAs from
random noise and spurious matches, and most importantly, verify the findings
experimentally.
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Fig. 5. Plot of the Valley index of a candidate sequence versus its free energy, as well
as 1,000 random permutations of the sequence. Note how the candidate sequence
lies outside of the 90% confidence ellipse, suggesting an especially stable structure.

More broadly, the integration of mathematical RNA modeling (such as by
graph theory, see Appendix) and experimental methods has the potential to
greatly expand our knowledge of RNA’s repertoire through the development of
new tools for analyzing RNA motifs, genome analysis, and improvement of the
in vitro selection technology. These tools and technologies will likely broaden
the scope of RNA-based methods for biomedical applications including se-
lection of complex synthetic RNAs and identification of ncRNAs associated
with various physiological functions. Ultimately, it is prudent to address the
challenging problem of connecting and better characterizing the relationships
between 2D and 3D RNA folds.
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Table 4. Selected candidate sequences from the candidate pools for streptomycin,
chloramphenicol, neomycin B, and ATP (after filtering by looking at predicted 2D
structures). Included are the computed energetic data, test results, locations of the
start sites of the sequences, and GenBank annotations. The corresponding RNA
sequences have T replaced by U.

Sequence F Tm Tm-F V-F
Genome Location Gene  (kcal/mol) (°C) Test V Test
ATP
5’-GCTGGTCGAA GACACTGGCT GTCGCTGTCG ACGGCGATCA GC
Halobacterium sp. PNRC200 non-coding —19.43 71.6 + 454 +
NRC1 plasmid 92229
Halobacterium sp. PNRCI00 non-coding
NRC1 plasmid 92229
STREPTOMYCIN
5’-GTACCCGGAC GTGCCCTTCC AGGCGTCCAT GGAGGCCTGG CTCGGGGCGG TGC
S. avermitilis 7323209  non-coding —28.64 1114 — 084 -—

NEOMYCIN B
5’-TGCGGGCGAA CAGTTTGCA

E. coli O157:H7 5503670  non-coding —7.61 81.0 + 1.12 +
EDL933
5’-TTGAGCAGGG GCGTGAAGTT TTTGCTTTG
E. coli CFTO073 3864206 Smf —-10.79 834 + 144 +
5’-AGTCTGGTGG GCGATATGTT TATTATGAT
E. coli K12 1324039 yciQ —6.10 578 + 224 -—
E. coli O157:H7 1826735 ECs1840
E. coli O157:H7 2260441 72542
EDI933
E. coli CFTO073 1569619 yciQ
CHLORAMPHENICOL
5’-TCAGAGCTGA AAAACTGGCC CCGAGTGCAG CTAAAAACTG A
E. coli O157:H7 1532105 ECs1492 —10.58 726 — 240 -
E. coli O157:H7 1617201 Mfd

EDL933
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Appendix: Use of Graph Theory to analyze RNA 2D
Structure and Function

RNA genomics and graph theory

This article focused on using RNA motifs from in vitro selection experiments
to discover novel functional RNA molecules in genomes. An alternate approach
to RNA genomics developed in our group is the use of graph theory for course-
grained secondary structure modeling (see, for instance, [14, 11, 26, 35]). In-
deed, the utility of the graph theory approach to RNA secondary structure
has been known as early as the 1980’s with work done on tree edit distances
[43], RNA structure comparison [5, 28], and RNA structure statistics [12].
Graph theory analysis of genomes is promising because all RNA structures
can be schematically represented as two-dimensional graphs and thus novel
graph topologies from graphical enumeration can be used to drive discovery
of novel RNA motifs in genomes via methods and analyses similar to those
described here. Below, we outline the essentials and advantages of graph the-
ory for describing, cataloguing, and predicting RNA structures in the hope
that this will stimulate mathematicians to work in this area.

RNA structural motifs and graph theory

RNA molecules are hierarchical in nature since their secondary structures
are known to be stable independently of their tertiary structures [50]. Thus,
many groups approach RNA by focusing on 2D RNA structures [17, 56, 38,
7, 30, 15, 13]. RNA secondary motifs have a network-like topology with stems
linking loops, bulges, and junctions (Figure 6). Such a topological RNA rep-
resentation allows exploration of RNA topologies using graph theory, a field
in mathematics widely used for analyzing networks and enumerating struc-
tural possibilities, including hydrocarbons, genetic and biochemical networks,
ecology, transportation, and the Internet [8, 18, 4].

Figure 6 shows three RNA secondary (tree) motifs represented as tree
graphs: the vertices (o) are RNA loops, bulges or junctions, and the edges
(lines, —) are RNA stems (precise rules are detailed in [14]). Thus, the
schematic tree graphs represent the connectivity between the RNA secondary
elements (e.g., stems, loops, bulges, junctions). The tree graphs provide in-
tuitive representations of RNA structures, but they cannot represent other
important RNA types, such as pseudoknots. For completeness, we developed
another class of RNA graphs called dual graphs (third row of Figure 6; [14]);
dual graphs can represent all RNA trees and pseudoknots and can be general-
ized to represent unusual RNA structures with triple, quadruple, and higher-
order helices (e.g., occurring in RNA frameshift signal of HIV-1 and RNAs
interacting with antibiotic neomycin [2, 1]).

Since the “RNA graphs” are discrete, they allow us to enumerate all pos-
sible 2D RNA motifs using enumeration methods of graph theory. Graphical
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enumeration of RNA topologies can be performed analytically or computation-
ally depending on the complexity of the structures. For example, for unlabeled
trees, the number of possible graphs with V vertices is obtained from the co-
efficients ¢; associated with the z; term of the counting polynomial derived
by Harary and Prins [20]:

t:Zcixi =z + 2% +2° 4+ 22% + 32° + 625 + 1127 + 2328 + 472°
i

+ 10620 + - --

For example, there is only 1 distinct graph each for V' = 1,2, 3 vertices (since
¢1 = c2 = c3 = 1) and 2 distinct 4-vertex graphs (¢4 = 2), 3 distinct 5-vertex
graphs (¢s = 3), and so on.

RNA single strand tRNA 5S rRNA
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Fig. 6. Graphical representations of RNA secondary structures (top) as tree (mid-
dle) and dual (bottom) graphs.

These sets of distinct graphs represent libraries of theoretically possible
RNA topologies, which include naturally occurring, candidate, and hypothet-
ical RNA motifs theory (see Schlick lab’s RNA-As-Graphs (RAG) web re-
source at monod.biomath.nyu.edu/rna/ and [11]). Known RNAs in public
databases (NDB and others) can thus be matched to the topologies we describe
(see Figure 6). Significantly, because we found that the known 2D RNA motifs
represent only a small subset of all possible topologies, we hypothesize that
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some of the missing motifs may represent undiscovered naturally occurring
RNAs while others may be designed and then synthesized in the laboratory.

Sequence space versus topology space

Current theoretical [42] and experimental [53] approaches to RNA structure
explore RNA’s sequence space. Experimental in vitro selection techniques ex-
ploit random sequence pools for comprehensive searches for novel RNAs. In
the search for RNA genes in genomes, scanning algorithms require sequence
and structural motifs as input. In contrast, our RNA analysis focuses on struc-
tural motifs rather than sequences per se. A critical advantage of RNA graph
analysis is that the space of topologically distinct structures is vastly smaller
than the nucleotide sequence space. In fact, we estimate, based on Harary-
Prins enumeration formula for tree graphs (above) [20, 19], that the number
of distinct RNA tree topologies can be parameterized as ~ 2.5(NV/20)=3 for
N > 60 compared with 4" for the nucleotide sequence space! The markedly
smaller RNA topology space implies great potential for the search for novel
RNA structures. Once a novel target topology/motif is identified, the corre-
sponding RNA sequences can be found in two ways: for natural RNAs, the
selected motif can be found by scanning the genomes; and, for synthetic RNAs,
they can be designed using modular assembly of existing RNA fragments (i.e.,
using a library of sequence/motif building blocks and application of 2D fold-
ing algorithms). Both of these research directions are currently being pursued
in our laboratory.

RAG: RNA-As-Graphs Web Resource

Our RNA graphical representations present an opportunity for cataloguing
of RNA structures based on their topological properties (Figure 7). Cat-
aloguing RNA’s structural diversity, including hypothetical motifs, is vital
for identifying novel RNA structures and for pursuing RNA genomics ini-
tiatives. Our RNA-As-Graphs (RAG; monod.biomath.nyu.edu/rna) web re-
source catalogues and ranks all mathematically possible (including existing
and candidate) RNA secondary motifs on the basis of graphical enumera-
tion results. We archive RNA tree motifs as “tree graphs” and other RNAs,
including pseudoknots, as general “dual graphs.” All RNA motifs are cata-
logued by graph vertex number (a measure of sequence length) and ranked by
topological complexity (second smallest eigenvalue (A2) corresponding to the
graph’s Laplacian matrix). RAG’s inventory immediately suggests candidates
for novel RNA motifs, either naturally occurring or synthetic. Through RAG,
we hope to pursue and further stimulate efforts to predict and design novel
RNA motifs and thereby contribute to RNA genomics initiatives.
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Fig. 7. RNA tree motif libraries for V = 4,5. V is vertex number and A» is the
second smallest eigenvalue of the Laplacian matrix.
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