Configurational Transitions in Fourier Series-Represented DNA Supercoils


A new Fourier series representation of supercoiled DNA is employed in Langevin dynamics simulations to study large-scale configurational motions of intermediate-length chains. The polymer is modeled as an ideal elastic rod subject to long-range van der Waals' interactions. The van der Waals' term prevents the self contact of distant chain segments and also mimics attractive forces thought to stabilize the association of closely spaced charged rods. The finite Fourier series-derived polymer formulation is an alternative to the piecewise B-spline curves used in past work to describe the motion of smoothly deformed supercoiled DNA in terms of a limited number of independent variables. This study focuses on two large-scale configurational events: the interconversion between circular and figure-8 forms at a relatively low level of supercoiling, and the transformation between branched and interwound structures at a higher superhelical density.




Click to go back to the publication list

Webpage design by Igor Zilberman